www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - TF einer CF im Banachraum
TF einer CF im Banachraum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

TF einer CF im Banachraum: Induktionsaufgabe
Status: (Frage) beantwortet Status 
Datum: 19:30 Mi 18.11.2009
Autor: Tina85

Aufgabe
Sei A ein Banachraum und [mm] (a_n) [/mm] eine Cauchyfolge in A.
Man finde nun mittels Induktion eine Teilfolge, deren aufeinanderfolgende Elemente einen Abstand kleiner [mm] 2^{-j} [/mm] haben.

Hallo zusammen!

Die Induktion sollte ja vermutlich über j laufen, oder?
Aber was ist überhaupt meine Induktions-Aussage, die ich beweisen will?
Bzw. der Induktionsanfang?

Wär super, wenn mir da jemand ein paar Hinweise geben könnte :)

Grüße,
Tina







Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
TF einer CF im Banachraum: Antwort
Status: (Antwort) fertig Status 
Datum: 07:27 Do 19.11.2009
Autor: fred97

Da [mm] (a_n) [/mm] eine Cauchyfolge ist, ex ein Index [mm] n_1 [/mm] mit:

                   [mm] $||a_n-a_{n_1}|| [/mm] < 1/2$   für n [mm] \ge n_1 [/mm]

Aus dem gleichen Grund ex. ein Index [mm] n_2 [/mm] > [mm] n_1 [/mm] mit:

                   [mm] $||a_n-a_{n_2}|| [/mm] < [mm] 1/2^2$ [/mm]   für n [mm] \ge n_2 [/mm]

etc... . Jetzt bist Du dran !

FRED

Bezug
                
Bezug
TF einer CF im Banachraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:21 Do 19.11.2009
Autor: Tina85

Guten Morgen!

Erst mal Danke für deine Hilfe :)

Meine Induktionsbehauptung ist doch:
Ich finde Indizes [mm] n_{1} [/mm] < [mm] n_{2} [/mm] < [mm] n_{3} [/mm] < ... < [mm] n_{j} [/mm] , so dass für alle j [mm] \in \IN [/mm] gilt:
[mm] \vmat{ a_{n_{j+1}}-a_{n_{j}} } [/mm] < [mm] \epsilon_{j} [/mm] = 2^-j

Induktionsanfang ist das, was du gemacht hast.

Induktionsannahme ist, dass die Aussage für j gilt.

Der Induktionsschritt ist mein Problem:
Sei [mm] \epsilon_{j+1}= 2^{-(j+1)}, [/mm] dann finde ich ein [mm] n_{j+1} [/mm] so dass [mm] \vmat{ a_{n}-a_{n_{j+1}}} [/mm] < [mm] \epsilon_{j+1} [/mm] für n [mm] \ge n_{j+1} [/mm]

Ebenso finde ich zu  [mm] \epsilon_{j+2}= 2^{-(j+2)}, [/mm] ein [mm] n_{j+2} [/mm] > [mm] n_{j+1} [/mm] so dass [mm] \vmat{ a_{n}-a_{n_{j+2}}} [/mm] < [mm] \epsilon_{j+2} [/mm] für n [mm] \ge n_{j+2} [/mm]

Und damit würde ja wegen [mm] n_{j+2} [/mm] > [mm] n_{j+1} [/mm]  gelten:
[mm] \vmat{ a_{n_{j+2}}-a_{n_{j+1}}} [/mm] < [mm] \epsilon_{j+1} [/mm]

Aber irgendwie fehlt mir hier der eigentliche Induktionsschritt, oder??

Liebe Grüße,
Tina


Bezug
                        
Bezug
TF einer CF im Banachraum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 Do 19.11.2009
Autor: fred97

Die Induktion mußt Du anders machen:

Zunächst die folgende

Behauptung: es gibt eine Teilfolge [mm] (a_{n_k}) [/mm] mit:

          (*)        [mm] $||a_n-a_{n_k}|| <1/2^k$ [/mm] für n [mm] \ge n_k [/mm]

Beweis (induktiv)

Ind.-Anfang:  habe ich oben schon gemacht

Ind. Vor: Sei k [mm] \in \IN [/mm] und wir haben konstruiert [mm] n_1
                  [mm] $||a_n-a_{n_j}|| <1/2^k$ [/mm] für n [mm] \ge n_j [/mm]     (j = 1,2, ..., k)

Ind. Schritt:Da [mm] (a_n) [/mm] eine Cauchyfolge ist, ex ein [mm] n_{k+1}>n_k [/mm] mit

                    [mm] $||a_n-a_{n_{k+1}}|| <1/2^{k+1}$ [/mm] für n [mm] \ge n_{k+1} [/mm]

Beweisende.


Damit haben wir eine Teilfolge  [mm] (a_{n_k}) [/mm] mit der Eigenschaft (*) gebastelt.

Ist nun k [mm] \in \IN, [/mm] so ist [mm] n_{k+1}>n_k [/mm] , also folgt aus (*)

                     [mm] $||a_{n_{k+1}}-a_{n_k}|| <1/2^k$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de