www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Tangens hyperbolicus
Tangens hyperbolicus < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangens hyperbolicus: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:13 Mi 10.10.2007
Autor: schlaumeier

Aufgabe
f(x)=0,5ln(x+1/x-1)
g(x)=tan h(x)

Benötige den Beweis, dass die gegebene Funktion tan h(x) die Umkehrfunktion der Funktion  f(x) ist. Umkehr von f(x) zu g(x), also nicht den gewöhnlichen Weg...
Dieses Forum ist das Einzige, in dem ich diese Frage stelle.

        
Bezug
Tangens hyperbolicus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:38 Mi 10.10.2007
Autor: Marc

Hallo schlaumeier

> f(x)=0,5ln(x+1/x-1)

Bist Du sicher, dass die Funktion so lautet:

[mm] $f(x)=0{,}5\ln\left(x+\bruch1x-1\right)$ [/mm]

Falls nicht, korrigiere sie bitte.

Viele Grüße,
Marc

Bezug
                
Bezug
Tangens hyperbolicus: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 Mi 10.10.2007
Autor: rainerS

Hallo,

er meint

[mm] \bruch{1}{2} \ln \bruch{1+x}{1-x} [/mm].

[mm]\bruch{1}{2} \ln \bruch{x+1}{x-1}[/mm] ist die Umkehrfunktion von coth.

Das lässt sich aus
[mm] \tanh x = \bruch{e^x-e^{-x}}{e^x+e^{-x}} [/mm]
schnell ausrechnen: setze [mm]z=e^x[/mm] und löse nach z auf.

Viele Grüße
  Rainer

Bezug
        
Bezug
Tangens hyperbolicus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:24 Mi 10.10.2007
Autor: schlaumeier

1. "ist die Umkehrfunktion von coth.(x) "ist nicht ganz korekt, da die Vorzeichen im Zähler und Nenner vertauscht sind. Richtig: tanh(x)
2. Der Weg des Beweises geht aber von :   f(x) zu g(x)!!!



Bezug
                
Bezug
Tangens hyperbolicus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:04 Do 11.10.2007
Autor: rainerS

Hallo!

> 1. "ist die Umkehrfunktion von coth.(x) "ist nicht ganz
> korekt, da die Vorzeichen im Zähler und Nenner vertauscht
> sind. Richtig: tanh(x)

[notok] Was du schreibst kann nicht sein, da der coth für positive reelle Argumente immer Werte >1 liefert, der tanh zwischen 0 und 1.

>  2. Der Weg des Beweises geht aber von :   f(x) zu g(x)!!!

??? Umkehrfunktion ist Umkehrfunktion, da gibt's nicht zwei verschiedene je nach Richtung.

Grüße
  Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de