www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Tangente&Steigung
Tangente&Steigung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente&Steigung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:08 Sa 27.10.2012
Autor: Kugelrund

Aufgabe
In welchem Punkt hat der Graph der reellen Funktion f(x)= [mm] \bruch{4}{3}x^3-4x^2-2 [/mm]

a)eine waagerechte Tangente
b) eine Tangente mit der Steigungsmaßzahl -2

Meine Lösungen:

a) f´(x)=0
    
     f´(x)= [mm] 2x^2-4x [/mm]


[mm] 0=2x^2-4x [/mm]

[mm] x_{1} [/mm] =0 und [mm] x_{2}=2 [/mm]

[mm] x_{1} [/mm] und [mm] x_{2} [/mm] in Funktion einsetzen

damit hat man eine Tangente im Punkt x=0: y=-1
zweite Tangente im Punkt x=2 : y= -3,7

b) f´(x)= -2


f´(-2)= [mm] 2(-2)^2-4*(-2) [/mm]

=16

Sind die Werte richtig berechnet? Und wie kann ich jetzt die Tangentengleichung aufschreiben.
    

        
Bezug
Tangente&Steigung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Sa 27.10.2012
Autor: sissile

Hallo
f(x)= 4/3 [mm] x^3 [/mm] - 4 [mm] x^2 [/mm] -2
f'(x) = [mm] 4x^2 [/mm] -8 x
a)
Beim Einsetzten in die Funktion ist was schief gelaufen

f(0)= -2
f(2)= - 7 [mm] \frac{1}{3} [/mm]

b)
Ansatz richtig: f´(x)= -2
<=> [mm] 4x^2 [/mm] -8 x =-2
..

> f´(-2)= $ [mm] 2(-2)^2-4\cdot{}(-2) [/mm] $=16

besagt dass am Punkt x=-2 die Steigung 16 beträgt. Wollten wir das wissen?: Nein.

Liebe Grüße

Bezug
        
Bezug
Tangente&Steigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Sa 27.10.2012
Autor: Kugelrund

Aber was muss ich denn dann bei b machen ????

Bezug
                
Bezug
Tangente&Steigung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Sa 27.10.2012
Autor: sissile

Nun bei a) waren die Punkte mit waagrechter Tangente gefragt, also wo die Steigung der Tangente 0 berträgt.
Was haben wir gemacht?
A: Erste Ableitung=0 gesetzt.

Nun bei b)  sind die Punkt mit Steigung -2 gerfragt.
Was müssen wir machen?
A: Erste Ableitung =-2 setzten

Wie im zweiten Posting geschrieben:
f´(x)= -2
<=> $ [mm] 4x^2 [/mm] $ -8 x =-2
Nun auflösen nach x.

Liebe grüße

Bezug
        
Bezug
Tangente&Steigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:14 Sa 27.10.2012
Autor: Kugelrund

Ok also ist es so richtig:

b) f´(x)=-2

f´(x)= [mm] 4x^2-8x [/mm]

[mm] -2=4x^2-8x [/mm]

[mm] x_{1}=-2 [/mm] und [mm] x_{2}=1,5 [/mm]

Tangente im Punkt x=-2

f(-2)= [mm] 2/3*(-2)^3-2*(-2)^2-1 [/mm]
= [mm] -14\bruch{1}{3} [/mm]

[mm] f´(-2)=2*(-2)^2+4*(-2) [/mm]
=16

[mm] -14\bruch{1}{3} [/mm] = 16-2+b

b=  [mm] 17\bruch{2}{3} [/mm]

[mm] y=16x+17\bruch{2}{3} [/mm] (ist die gleichung richtig oder ist die gar nicht gefordert????)

das gleiche noch mal für den Punkt x=1,5 da bekomme ich als Tangente
y= -3x+1,25

Bezug
                
Bezug
Tangente&Steigung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Sa 27.10.2012
Autor: sissile


> $ [mm] -2=4x^2-8x [/mm] $

> $ [mm] x_{1}=-2 [/mm] $ und $ [mm] x_{2}=1,5 [/mm] $

Ich stoppe hier beim Lesen.
Setzte mal z.B dein [mm] x_1 [/mm] Wert in die Gleichung oben ein.
-2 = [mm] 4*(-2)^2 [/mm] - 8*(-2)
-2 = 4*4 + 16
-2 = 32
-> Widerspruch
genauso bei deinen [mm] x_2 [/mm] Wert.

Also nochmal:
[mm] -2=4x^2-8x [/mm]
<=>
0= [mm] 4x^2 [/mm] - 8x +2
0= [mm] 2x^2 [/mm] - 4x +1
Nun in Lösungsformel für quadratische Gleichungen einsetzten .



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de