www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Tangente an Niveaulinie
Tangente an Niveaulinie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente an Niveaulinie: Formel
Status: (Frage) beantwortet Status 
Datum: 23:52 Mi 19.07.2006
Autor: amalie

Ich bin auf der Suche nach einer Formel für die Tangente in einem Punkt an die Nieveaulinie einer Fkt von [mm] R^2 [/mm] nach R
Vielen Dank
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Tangente an Niveaulinie: Antwort
Status: (Antwort) fertig Status 
Datum: 00:35 Do 20.07.2006
Autor: felixf

Hallo Amalie!

> Ich bin auf der Suche nach einer Formel für die Tangente in
> einem Punkt an die Nieveaulinie einer Fkt von [mm]R^2[/mm] nach R

Sei $f : [mm] \IR^2 \to \IR$ [/mm] eine 'hinreichend glatte' Funktion (etwa einmal stetig diffbar in beide Richtungen). Sei [mm] $(x_0, y_0)$ [/mm] ein Punkt mit [mm] $f(x_0, y_0) [/mm] = c$. Wenn nicht gerade [mm] $grad(f)(x_0, y_0) [/mm] := [mm] (\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)) [/mm] = (0, 0)$ ist (in diesem Fall hast du einen Sattelpunkt und es gibt keine eindeutige Tangente), gibt es genau einen Richtungsvektor, in dem die Richtungsableitung gerade 0 ist.

(Die Bedingung, dass [mm] $grad(f)(x_0, y_0) \neq [/mm] (0, 0)$ ist, bedeutet gerade, dass du den Hauptsatz ueber implizite Funktionen -- der dir die Niveaulinie liefert -- entweder auf die erste oder die zweite Komponente von $f$ in dem Punkt [mm] $(x_0, y_0)$ [/mm] angewandt werden kann.)

Sei $(v, w)$ ein Richtungsvektor (also $(v, w) [mm] \neq [/mm] (0, 0)$). Dann ist die Richtungsableitung von $f$ in [mm] $(x_0, y_0)$ [/mm] in Richtung $(v, w)$ gerade durch [mm] $grad(f)(x_0, y_0) [/mm] * (v, w) = [mm] \frac{\partial f}{\partial x}(x_0, y_0) \cdot [/mm] v + [mm] \frac{\partial f}{\partial y}(x_0, y_0) \cdot [/mm] w$ gegeben. (Die Menge aller Richtungsvektoren, fuer die die Richtungsableitung 0 ist, bildet einen punktierten Vektorraum der Dimension 1.)

Nun etwas allgemeines: Ist $(x, y) [mm] \neq [/mm] (0, 0)$ irgendein Vektor, so gilt immer $(x, y) * (y, -x) = x [mm] \cdot [/mm] y + y [mm] \cdot [/mm] (-x) = 0$. Also tut es der Richtungsvektor $(v, w) = [mm] (\frac{\partial f}{\partial y}(x_0, y_0), -\frac{\partial f}{\partial x}(x_0, y_0))$. [/mm]

Die Tangente ist nun die Gerade, die durch die Punkte [mm] $(x_0, y_0)$ [/mm] und [mm] $(x_0 [/mm] + v, [mm] y_0 [/mm] + w)$ geht (also die den Aufhaengepunkt [mm] $(x_0, y_0)$ [/mm] und den Richtungsvektor $(v, w)$ hat). Eine Gleichung fuer die Gerade kannst du nun leicht selber aufstellen :-)

LG Felix


Bezug
                
Bezug
Tangente an Niveaulinie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:44 Do 20.07.2006
Autor: amalie

Vielen lieben Dank! Das war sehr hilfreich

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de