www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Tangente an Parabel
Tangente an Parabel < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente an Parabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:59 Sa 09.12.2006
Autor: Informacao

Hi,

ich soll die gleichung einer parabeln angeben, die die tangente y=2x-4 berührt.

ich mache das dannn so:

y=ax²
y=2x-4
dann gleichsetzen, damit ich a rausbekomme

ax²-2x+4=0 dann muss ich durch a teilen, aber hier komme ich schon nicht weiter..ich weiß nicht genau, wie ich das dann alles auflösen soll..

und wenn ich dann a raushätte muss ich auch noch den berührpunkt angeben! wie geht das dann??

würde mich über hilfe freuen!

viele grüße
informacao

        
Bezug
Tangente an Parabel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Sa 09.12.2006
Autor: M.Rex

Hallo

> Hi,
>  
> ich soll die gleichung einer parabeln angeben, die die
> tangente y=2x-4 berührt.
>  
> ich mache das dannn so:
>  
> y=ax²
>  y=2x-4
>  dann gleichsetzen, damit ich a rausbekomme
>  
> ax²-2x+4=0 dann muss ich durch a teilen,

Bis hierhin vollkommen Korrekt.

ax²-2x+4=0
[mm] \gdw x²-\bruch{2}{a}x+\bruch{4}{a}=0 [/mm]

Und jetzt in die p-q-Formel einsetzen:

[mm] x_{1;2}=\bruch{1}{a}\pm\wurzel{\bruch{1}{a²}-\bruch{4}{a}} [/mm]

Und, da jetzt nur EIN Schnittpunkt entestehen soll, warum, hatten wir in diversen Posts schon erklärt, muss gelten:
[mm] \wurzel{\bruch{1}{a²}-\bruch{4}{a}}=0 [/mm]
[mm] \gdw\bruch{1}{a²}=\bruch{4}{a} [/mm]
[mm] \gdw [/mm] 4a²=a

Daraus jetzt deine möglichen werte für a zu berechnen, überlasse ich jetzt dir.

>  
> und wenn ich dann a raushätte muss ich auch noch den
> berührpunkt angeben! wie geht das dann??
>  
> würde mich über hilfe freuen!
>  
> viele grüße
>  informacao


Wenn du diese Werte gefunden hast, kannst du diese in die p-Q-Formel von oben einsetzen.
Dann bekommst du für jedes a genau einen x-Wert heraus.
Dieses ist dann der x-Wert des Berührpunktes
Und diesen musst du dann noch in die Tangentengleichung einsetzen, um den y-Wert des entprechenden Berührpunktes zu ermitteln.

Marius

Bezug
                
Bezug
Tangente an Parabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Sa 09.12.2006
Autor: Informacao

hi

okay danke, das hab ich verstanden..
aber wie mach ich das mit:

4a²=a ??

und dann den wert in die pq formel einsetzen? ich hab viele solcher aufgaben. kannst du mir das vielleicht btite mal für die eine vormachen?
viele grüße
informacao

Bezug
                        
Bezug
Tangente an Parabel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Sa 09.12.2006
Autor: M.Rex

Hallo

Ausnahmsweise rechne ich diese Aufgabe nochmal vor. Das soll aber nicht die Regel werden.

4a²=a
[mm] \gdw [/mm] 4a²-a=0
[mm] \gdw [/mm] (4a-1)*a=0
[mm] \Rightarrow a_{1}=0 a_{2}=\bruch{1}{4} [/mm]

Nehmen wir das erste a

In [mm] x_{1;2}=\bruch{1}{a}\pm\wurzel{\bruch{1}{a²}-\bruch{4}{a}} [/mm]
eingesetzt:
[mm] \bruch{1}{0}\pm0 [/mm]
Und da haben wir das Problen, [mm] dass\bruch{1}{0} [/mm] nicht definert ist, also vergiss diese Lösung.

Zu [mm] a_{2}=\bruch{1}{4} [/mm]

Dann gilt:
[mm] x=\bruch{1}{\bruch{1}{4}}\pm0 [/mm]
[mm] \gdw [/mm] x=4

Und das noch in die Tangente (oder die Parabel [mm] \bruch{1}{4}x²) [/mm] einsetzen, ergibt:
y=4.

Das heisst, der Berührpunkt der Tangente an der Parabel [mm] \bruch{1}{4}x² [/mm] ist B(4/4)

Marius

Bezug
                        
Bezug
Tangente an Parabel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Sa 09.12.2006
Autor: Teufel

Hallo!

4a²=a
4a²-a=0

Hier KÖNNTEST du noch einmal die p-q-Formel anwenden!
Aber du kannst auch ein a ausklammern.

a(4a-1)=0

Eine Lösung für a wäre also 0, weil ein Produkt dann 0 wird, wenn ein Faktor 0 ist. Aber a=0 geht schlecht, weil du dann keine Parabel mehr hättest.

Also musst du den anderen Faktor 0 setzen, also (4a-1).
4a-1=0
4a=1
[mm] a=\bruch{1}{4} [/mm]

Das sieht doch schon besser aus :) und das sollte so stimmen. Denn wenn man sich sie Tangente vorstellt und dass die Parabel im Koordinatenurprung ihren Scheitel hat, dann muss sie ja gestaucht sein.

Bezug
                                
Bezug
Tangente an Parabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Sa 09.12.2006
Autor: Informacao

Hi,

danke ich habe das so weit verstanden..wirklich =)

aber ich habe noch eine andere frage zu folgender aufgabe:

ich muss für die parabeltangente parallel zu der gegebenen geraden den berührpunk angeben und die gleichung in normalform.
y=x²
y=0,5x-2

ich habe das so gemacht:

y=x²        y=0,5x+n

x²=0,5x+n
x²-0,5x-n=0

[mm] x_{1,2}=0,25\pm \wurzel{0,25²+n} [/mm]

bei berührpunkt muss die diskriminante 0 sein:
[mm] \bruch{1}{16}+n=0 [/mm]
<-> n= - [mm] \bruch{1}{16} [/mm]

also die tangentengleichung lautet: [mm] y=\bruch{1}{2}x-\bruch{1}{16} [/mm]

So..nun meine Frage: Wie gebe ich jetzt generell auf dem schnellsten weg den berührpunkt an ? ? das habe ich noch nicht so ganz verstanden!

viele grüße
informacao

Bezug
                                        
Bezug
Tangente an Parabel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Sa 09.12.2006
Autor: M.Rex

Hallo

> Hi,
>  
> danke ich habe das so weit verstanden..wirklich =)
>  
> aber ich habe noch eine andere frage zu folgender aufgabe:
>  
> ich muss für die parabeltangente parallel zu der gegebenen
> geraden den berührpunk angeben und die gleichung in
> normalform.
>  y=x²
>  y=0,5x-2
>  
> ich habe das so gemacht:
>  
> y=x²        y=0,5x+n
>  
> x²=0,5x+n
>  x²-0,5x-n=0
>  

[mm]\red{x_{1,2}=0,25\pm \wurzel{0,25²+n}}[/mm]

>  
> bei berührpunkt muss die diskriminante 0 sein:
>  [mm]\bruch{1}{16}+n=0[/mm]
>  <-> n= - [mm]\bruch{1}{16}[/mm]

>  
> also die tangentengleichung lautet:
> [mm]y=\bruch{1}{2}x-\bruch{1}{16}[/mm]
>  
> So..nun meine Frage: Wie gebe ich jetzt generell auf dem
> schnellsten weg den berührpunkt an ? ? das habe ich noch
> nicht so ganz verstanden!
>  
> viele grüße
>  informacao


Indem du das n in [mm] =\bruch{1}{16} [/mm] in die von mir rot markierte p-q-Formel einsetzt und das x berechnest.

Dann hast du schon mal die x-Koordinate des Berührpunktes. Und die y-Koordinate zu berechnen, sollte dann kein Problem mehr sein.

Marius

Bezug
                                                
Bezug
Tangente an Parabel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 Sa 09.12.2006
Autor: Informacao

okay, danke, dann ist alles klar!

informacao

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de