www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Tangente an einen Kreis
Tangente an einen Kreis < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente an einen Kreis: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 13:13 Sa 22.09.2007
Autor: Interpol

Aufgabe
Bestimmen Sie Gleichungen der Tangente von P (7| 1) an den Kreis k: x² = 25  

--> ( M(0|0))

Ich habe eine Gerade durch die Berührpunkte gelegt (x2 = 25 - 7x1).
Die habe ich dann in die Kreisgleichung x1² + x2² = r². die qu. Gleichung habe ich aufgelöst und habe x1 = 3 und x2 = 4 raus.

Die Zahlen stimmen alle, denn ich habe sie mit den Lösungen verglichen.

Nun steht in der Lösung aber, dass man daraus die Berührpunkte B (3|4) und B (4|-3) ablesen kann. Den zweiten Wert verstehe ich nicht. Wie kommt man darauf?


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://forum.abi-pur.de/thread.php?threadid=2871&boardid=11&styleid=2&sid=a63ce45e442a79949f305f7673853564&page=1

        
Bezug
Tangente an einen Kreis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Sa 22.09.2007
Autor: Sigrid


> Bestimmen Sie Gleichungen der Tangente von P (7| 1) an den
> Kreis k: x² = 25

Die Kreisgleichung heißt wohl [mm] $x_1^2 [/mm] + [mm] x_2^2 [/mm] = 25 $

> --> ( M(0|0))
>
> Ich habe eine Gerade durch die Berührpunkte gelegt (x2 = 25
> - 7x1).
> Die habe ich dann in die Kreisgleichung x1² + x2² = r². die
> qu. Gleichung habe ich aufgelöst und habe x1 = 3 und x2 = 4
> raus.
>
> Die Zahlen stimmen alle, denn ich habe sie mit den Lösungen
> verglichen.
>
> Nun steht in der Lösung aber, dass man daraus die
> Berührpunkte B (3|4) und B (4|-3) ablesen kann. Den zweiten
> Wert verstehe ich nicht. Wie kommt man darauf?

Du brauchst die Werte nur in die Gleichung $ [mm] x_2 [/mm] = 25 - 7 [mm] x_1 [/mm] $ einzusetzen.

Gruß
Sigrid

>  
>


Bezug
                
Bezug
Tangente an einen Kreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Sa 22.09.2007
Autor: Interpol


> > Bestimmen Sie Gleichungen der Tangente von P (7| 1) an den
> > Kreis k: x² = 25
>
> Die Kreisgleichung heißt wohl [mm]x_1^2 + x_2^2 = 25[/mm]
>  > --> (

> M(0|0))
> >
> > Ich habe eine Gerade durch die Berührpunkte gelegt (x2 = 25
> > - 7x1).
> > Die habe ich dann in die Kreisgleichung x1² + x2² = r². die
> > qu. Gleichung habe ich aufgelöst und habe x1 = 3 und x2 = 4
> > raus.
> >
> > Die Zahlen stimmen alle, denn ich habe sie mit den Lösungen
> > verglichen.
> >
> > Nun steht in der Lösung aber, dass man daraus die
> > Berührpunkte B (3|4) und B (4|-3) ablesen kann. Den zweiten
> > Wert verstehe ich nicht. Wie kommt man darauf?
>  
> Du brauchst die Werte nur in die Gleichung [mm]x_2 = 25 - 7 x_1[/mm]
> einzusetzen.
>  
> Gruß
>  Sigrid
>  >  
> >
>  

Danke für deine schnelle Antwort.
Die Gleichung heißt nur k: [mm] \vec{x} [/mm] ² = 25
Tut mir Leid, ich verstehe trotzdem nicht, wie man auf den zweiten Berührpunkt  B (4|-3) kommt.
Die Werte des ersten Berührpunktes habe ich ja ausgerechnet, aber wo die Werte für den zweiten herkommen, verstehe ich nicht.

Bezug
                        
Bezug
Tangente an einen Kreis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Sa 22.09.2007
Autor: Event_Horizon

Hallo!

Vielleicht solltest du [mm] x_1 [/mm] und [mm] x_2 [/mm] einfach mal durch x und y ersetzen.

Bei deiner quad. Gleichung erhälst du nicht x und y, sondern z.B. ZWEI werte für x, einmal 3, und einmal 4. Zu jedem der beiden x-Werte gibts natürlich auch y-Werte, die du aus der Kreisgleichung berechnen kannst.

Bezug
                                
Bezug
Tangente an einen Kreis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 22.09.2007
Autor: Interpol

Ach du meine Güte, bin ich dumm.
Tut mir Leid, ich hatte ein Brett vor dem Kopf.
Danke euch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de