www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Tangente/ebene/total.Diff'tial
Tangente/ebene/total.Diff'tial < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente/ebene/total.Diff'tial: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:59 Mi 27.05.2009
Autor: nitramGuk

Aufgabe
Geg: [mm]f(x,y)=3x^2+xy-y^2-4x-5y+6[/mm]
[mm]P_0 = (2,3,-8)[/mm]
Ges:
a) Anstieg der Tangente an f(x,y) in [mm]P_0[/mm], die parallel zur x-z-Ebene ist.
b) Anstiegswinkel der Tangente in [mm]P_0[/mm], die parallel zur y-z-Ebene ist.
c) Gleichung der Tangente aus b)
d) Gleichung der Tangentialebene an f(x,y) in [mm]P_0[/mm]
e) Änderung der Funktionswerte, wenn x=2 und y=3 um [mm]\Delta x[/mm] und [mm]\Delta y[/mm] verändert werden.
f) Schätzung der Funktionswerteänderung, wenn x=2 um 10% verringert und y=3 um 5% erhöht wird.
g) Vergleiche f) mit der exakten Änderung.

moin,

a) [mm]f_x(x,y) = 6x+y-4[/mm]
[mm]f_x(2,3)=11[/mm]

b) [mm]f_y(x,y) = x-2y-5[/mm]
[mm]f_y(2,3) = -9[/mm]
Winkel, war doch irgendwas mit Tangens?
Aber keine Ahnung, ob jetzt tan oder arctan, und wie ich da den TR einstellen muss (DEG, RAD, GRA) ?

c) [mm]3 = -9 * 2 +t[/mm]
[mm]t=21[/mm]
[mm]y=-9*x+21[/mm]

d) [mm]z-z_0 = f_x(x_0,y_0)*(x-x_0)+f_y(x_0,y_0)*(y-y_0)[/mm]
[mm]z+8=11*(x-2)-9*(y-3)[/mm]
[mm]z = 11x -9y -3[/mm]

e) hm, also totale Differential setzt sich ja aus [mm] f_x [/mm] und [mm] f_y [/mm] zusammen, und dazu jeweils die Änderung, hier ja allgemein, müsste dann doch sein:
[mm]d f = 11*\Delta x - 9*\Delta y[/mm] ?

f) [mm]x_1=2[/mm]; [mm]y_1=3[/mm]
[mm]\Delta x = -0,2[/mm]; [mm]\Delta y = 0,15[/mm]
[mm]d f = 11*-0,2 + (-9)*0,15 = -3,55[/mm]

g) [mm]x_2=1,8[/mm]; [mm]y_2=3,15[/mm]
[mm]z_2=f(x_2,y_2)=-11,4825[/mm]
[mm]z_2 - z = -11,4825 - (-8) = -3,4825[/mm]

Schätzung: -3,55 <-> Exakt: -3,4825

---

Ok, also sorry, dass das so lang ist, aber steht ja da "inklusive aller Teilaufgaben" ;-)

An sich nur Frage eben zu b) und e), aber wäre natürlich cool, wenn Ihr die Ergebnisse bei den anderen Teilaufgaben bestätigen könntet (oder berichtigen [aufgemerkt] ).

Danke

Frage in keinem anderen Internetforum gestellt!

        
Bezug
Tangente/ebene/total.Diff'tial: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 Mi 27.05.2009
Autor: MathePower

Hallo nitramGuk,

> Geg: [mm]f(x,y)=3x^2+xy-y^2-4x-5y+6[/mm]
>  [mm]P_0 = (2,3,-8)[/mm]
>  Ges:
>  a) Anstieg der Tangente an f(x,y) in [mm]P_0[/mm], die parallel zur
> x-z-Ebene ist.
>  b) Anstiegswinkel der Tangente in [mm]P_0[/mm], die parallel zur
> y-z-Ebene ist.
>  c) Gleichung der Tangente aus b)
>  d) Gleichung der Tangentialebene an f(x,y) in [mm]P_0[/mm]
>  e) Änderung der Funktionswerte, wenn x=2 und y=3 um [mm]\Delta x[/mm]
> und [mm]\Delta y[/mm] verändert werden.
>  f) Schätzung der Funktionswerteänderung, wenn x=2 um 10%
> verringert und y=3 um 5% erhöht wird.
>  g) Vergleiche f) mit der exakten Änderung.
>  moin,
>  
> a) [mm]f_x(x,y) = 6x+y-4[/mm]
>  [mm]f_x(2,3)=11[/mm]

[ok]


>  
> b) [mm]f_y(x,y) = x-2y-5[/mm]
>  [mm]f_y(2,3) = -9[/mm]


[ok]


>  Winkel, war doch
> irgendwas mit Tangens?
>  Aber keine Ahnung, ob jetzt tan oder arctan, und wie ich
> da den TR einstellen muss (DEG, RAD, GRA) ?


Es ist hier der arctan zu nehmen, und der TR auf RAD einzustellen.


>  
> c) [mm]3 = -9 * 2 +t[/mm]
>  [mm]t=21[/mm]
>  [mm]y=-9*x+21[/mm]


Die Tangente soll doch parallel zur y-z-Ebene sein,  demnach  x konstant.


>  
> d) [mm]z-z_0 = f_x(x_0,y_0)*(x-x_0)+f_y(x_0,y_0)*(y-y_0)[/mm]
>  
> [mm]z+8=11*(x-2)-9*(y-3)[/mm]
>  [mm]z = 11x -9y -3[/mm]
>  


[ok]


> e) hm, also totale Differential setzt sich ja aus [mm]f_x[/mm] und
> [mm]f_y[/mm] zusammen, und dazu jeweils die Änderung, hier ja
> allgemein, müsste dann doch sein:
>  [mm]d f = 11*\Delta x - 9*\Delta y[/mm] ?


[ok]


>  
> f) [mm]x_1=2[/mm]; [mm]y_1=3[/mm]
>  [mm]\Delta x = -0,2[/mm]; [mm]\Delta y = 0,15[/mm]
>  [mm]d f = 11*-0,2 + (-9)*0,15 = -3,55[/mm]


[ok]

>  
> g) [mm]x_2=1,8[/mm]; [mm]y_2=3,15[/mm]
>  [mm]z_2=f(x_2,y_2)=-11,4825[/mm]
>  [mm]z_2 - z = -11,4825 - (-8) = -3,4825[/mm]
>  
> Schätzung: -3,55 <-> Exakt: -3,4825
>  


[ok]


> ---
>  
> Ok, also sorry, dass das so lang ist, aber steht ja da
> "inklusive aller Teilaufgaben" ;-)
>  
> An sich nur Frage eben zu b) und e), aber wäre natürlich
> cool, wenn Ihr die Ergebnisse bei den anderen Teilaufgaben
> bestätigen könntet (oder berichtien [aufgemerkt] ).
>  
> Danke
>  
> Frage in keinem anderen Internetforum gestellt!


Gruß
MathePower

Bezug
                
Bezug
Tangente/ebene/total.Diff'tial: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Do 28.05.2009
Autor: nitramGuk


> Hallo nitramGuk,
>  
> > Geg: [mm]f(x,y)=3x^2+xy-y^2-4x-5y+6[/mm]
>  >  [mm]P_0 = (2,3,-8)[/mm]
>  >  Ges:

>  >  b) Anstiegswinkel der Tangente in [mm]P_0[/mm], die parallel zur
> > y-z-Ebene ist.
>  >  c) Gleichung der Tangente aus b)

>  
>
> >  

> > b) [mm]f_y(x,y) = x-2y-5[/mm]
>  >  [mm]f_y(2,3) = -9[/mm]
>  
>
> [ok]
>  
>
> >  Winkel, war doch

> > irgendwas mit Tangens?
>  >  Aber keine Ahnung, ob jetzt tan oder arctan, und wie
> ich
> > da den TR einstellen muss (DEG, RAD, GRA) ?
>  
>
> Es ist hier der arctan zu nehmen, und der TR auf RAD
> einzustellen.

Danke erstmal soweit, nur kommt da was seltsames raus:

arctan(-9) [RAD] = -1,46
Das wird doch nicht der Winkel in Grad (°) sein?

Hab mal ausprobiert, und mit
arctan(-9) [DEG] = -83,66 kommt das schon eher hin (also natürlich 83,66° )

Oder vielleicht bist du gar nicht von Grad ausgegangen, ich vermute aber, dass ° gefragt sind?

>  
>
> >  

> > c) [mm]3 = -9 * 2 +t[/mm]
>  >  [mm]t=21[/mm]
>  >  [mm]y=-9*x+21[/mm]
>  
>
> Die Tangente soll doch parallel zur y-z-Ebene sein,  
> demnach  x konstant.
>  
>

OK, das verwirrt mich jetzt ;-)
Mir ist zwar jetzt klar, dass ja da unmöglich ein x drin vorkommen kann, aber ich kann ja nicht einfach für das x 2 einsetzen ([mm]x_0[/mm]), dann würde ja nur noch:
[mm]y = 3[/mm] dastehen...

Also vermute ich, dass ich entweder:
1) [mm]y = -9 * z +21[/mm]
oder:
2) [mm]z = -9*y +21[/mm]
nehmen muss.

Da ja die Tangente den Punkt [mm]P_0[/mm] enthalten muss, hab ich mal beide Möglichkeiten getestet:

1) [mm] 3 = -9 * -8 + 21 [/mm]
[mm] 3 = 93 [/mm] [abgelehnt]

2) [mm] -8 = -9*3 +21[/mm]
[mm] -8 = -27+21 = -8[/mm] [bindafuer]

Mein "Gedankengang" so richtig?

>
> Gruß
>  MathePower

Gruß & Danke
nitramGuk


Bezug
                        
Bezug
Tangente/ebene/total.Diff'tial: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Do 28.05.2009
Autor: MathePower

Hallo nitramGuk,

> > Hallo nitramGuk,
>  >  
> > > Geg: [mm]f(x,y)=3x^2+xy-y^2-4x-5y+6[/mm]
>  >  >  [mm]P_0 = (2,3,-8)[/mm]
>  >  >  Ges:
>  
> >  >  b) Anstiegswinkel der Tangente in [mm]P_0[/mm], die parallel zur

> > > y-z-Ebene ist.
>  >  >  c) Gleichung der Tangente aus b)
>  
> >  

> >
> > >  

> > > b) [mm]f_y(x,y) = x-2y-5[/mm]
>  >  >  [mm]f_y(2,3) = -9[/mm]
>  >  
> >
> > [ok]
>  >  
> >
> > >  Winkel, war doch

> > > irgendwas mit Tangens?
>  >  >  Aber keine Ahnung, ob jetzt tan oder arctan, und wie
> > ich
> > > da den TR einstellen muss (DEG, RAD, GRA) ?
>  >  
> >
> > Es ist hier der arctan zu nehmen, und der TR auf RAD
> > einzustellen.
>  
> Danke erstmal soweit, nur kommt da was seltsames raus:
>  
> arctan(-9) [RAD] = -1,46
>  Das wird doch nicht der Winkel in Grad (°) sein?
>  
> Hab mal ausprobiert, und mit
>  arctan(-9) [DEG] = -83,66 kommt das schon eher hin (also
> natürlich 83,66° )
>  
> Oder vielleicht bist du gar nicht von Grad ausgegangen, ich
> vermute aber, dass ° gefragt sind?


Ich bin von Radiant ausgegangen. Natürlich bekommt man dann den Winkel in Radiant heraus, den man dann in Grad umrechnen muß. Dies umgeht man wahrscheinlich damit, dass man den TR auf den Modus DEG einstellt.


>  
> >  

> >
> > >  

> > > c) [mm]3 = -9 * 2 +t[/mm]
>  >  >  [mm]t=21[/mm]
>  >  >  [mm]y=-9*x+21[/mm]
>  >  
> >
> > Die Tangente soll doch parallel zur y-z-Ebene sein,  
> > demnach  x konstant.
>  >  
> >
>
> OK, das verwirrt mich jetzt ;-)
>  Mir ist zwar jetzt klar, dass ja da unmöglich ein x drin
> vorkommen kann, aber ich kann ja nicht einfach für das x 2
> einsetzen ([mm]x_0[/mm]), dann würde ja nur noch:
>  [mm]y = 3[/mm] dastehen...
>  
> Also vermute ich, dass ich entweder:
>  1) [mm]y = -9 * z +21[/mm]
>  oder:
>  2) [mm]z = -9*y +21[/mm]
>  nehmen muss.
>  
> Da ja die Tangente den Punkt [mm]P_0[/mm] enthalten muss, hab ich
> mal beide Möglichkeiten getestet:
>  
> 1) [mm]3 = -9 * -8 + 21[/mm]
>  [mm]3 = 93[/mm] [abgelehnt]
>  
> 2) [mm]-8 = -9*3 +21[/mm]


Hier muß es doch heißen:

[mm]-8=-9*3+\red{19}[/mm]


>  [mm]-8 = -27+21 = -8[/mm] [bindafuer]
>  
> Mein "Gedankengang" so richtig?


Wenn die 21 als eine 19 anzusehen ist, dann ist Dein Gedankengang richtig.


>  
> >
> > Gruß
>  >  MathePower
>
> Gruß & Danke
>  nitramGuk
>  


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de