www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Tangente gesucht
Tangente gesucht < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente gesucht: Probleme
Status: (Frage) beantwortet Status 
Datum: 19:52 Mi 16.01.2008
Autor: Blaub33r3

Aufgabe
[mm] f(x)=x^3-9x^2+18x [/mm]

Bestimmen Sie einen Punkt P [mm] \not=(0/0) [/mm] des Graphen f(x) so, dass die Tangente in diesem Punkt an dem Graphen durch den Ursprung geht. Ermitteln Sie die Gleichung dieser.

Hallo Leute,

2 Begingung gibts es

(1) Funktionswerte sind gleich => m*x [mm] =x^3-9x^2+18x [/mm]
(2) Steigung im Punkt gleich => m=f'(x) <=> m = [mm] 3x^2-18x+18 [/mm]

dann m = m gesetzt => [mm] x^2-9x+18=3x^2-18x+18 [/mm]

dann bekomm ich ja als Berührstelle 2,25....Vom Wendepunkt ausbetrachtet wär das ja Korrekt....aber die Tangente muss ja auch durch den Ursprung, was habe ich falsch gemacht?

Grüße Daniel



        
Bezug
Tangente gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Mi 16.01.2008
Autor: Teufel

Hallo!

Wahrscheinlich hast du dich nur verrechnet. Ich komme auf x=4,5!

Bezug
                
Bezug
Tangente gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Mi 16.01.2008
Autor: Blaub33r3

Aufgabe
Ähm falscher Ansatz???

Nabend,
wenn du dir mal die f(x) = [mm] x^3-9x^2+18x [/mm] plotten lässt, sieht man doch eindeutig das das Ergebnis zwischen 0 < 1 sein muss...die muss ja auch durch den Ursprung!

4,5 ist falsch würd ich sagen ;)

Grüße Daniel

Bezug
                        
Bezug
Tangente gesucht: Teufel hat recht
Status: (Antwort) fertig Status 
Datum: 21:50 Mi 16.01.2008
Autor: M.Rex

Hallo

Teufel hat recht, der Schnittpunkt liegt bei x=4,5.


$ [mm] f(x)=x^3-9x^2+18x [/mm] $
f'(x)=3x²-18x+18

Jetzt suchst du eine Tangente t(x)=mx+n

Da diese ducht den Urspung gehen soll, gilt:

t(0)=0, also n=0

Also hast du eine Tangente der Form t(x)=mx

Jetzt weisst du, dass m=f'(x) gilt.

Also: m=3x²-18x+18

Somit kannst du die Tangente t schreiben als:

t(x)=mx=(3x²-18x+18)*x=3x³-18x²+18x.

Jetzt suchst du die Schnittpunkte dieser Tangente mit f(x)

Also soll gelten: t(x)=f(x)
[mm] \gdw [/mm] 3x³-18x²+18x=x³-9x²+18x
[mm] \gdw [/mm] 2x³-9x²=0
[mm] \gdw [/mm] x²(2x-9)=0
[mm] \Rightarrow x_{0} [/mm] (Das war ja auch schon in der Aufgabe gegeben) oder x=4,5

Jetzt setze mal 4,5 in f' ein, um die Tangentensteiung zu ermitteln.
f'(4,5)=-2,25, also [mm] m_{t}=-2,25, [/mm] somit t(x)=-2,25x

Das Ergebnis stimmt auch mit der Zeichnung überein.

[Dateianhang nicht öffentlich]

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Bezug
                                
Bezug
Tangente gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:00 Mi 16.01.2008
Autor: Blaub33r3

Ohh, gott....vergesst bloß alles was ich gesagt habe :D
...ich war gerade etwas unzurechnungsfähig^^....

also...sry nochmal @teufel :D

schönen abend jungs!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de