www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Tangente und Gerade
Tangente und Gerade < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente und Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Di 12.02.2008
Autor: Mone25

Aufgabe
in welchem Punkt der Parabel [mm] f(x)=-0,5x^2+3x-4 [/mm] ist die Tangente senkrecht zur geraden h:3y-x-2=0

Hallo,

ich weiß leider nicht, wie ich diese Aufgabe lösen kann...bitte um Hilfe! :-(

MfG
Mone

        
Bezug
Tangente und Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Di 12.02.2008
Autor: Teufel

Hallo!

Bei senkrechten geraden verhält sich der Anstieg so: [mm] m_1*m_2=-1. [/mm]

Forme die Gerade h am besten mal in die Form y=mx+n um, dann kannst du den Anstieg [mm] m_1 [/mm] sofort ablesen.

Den Anstieg [mm] m_2 [/mm] der Parabel, kannst du dann erstmal allgemein mit der 1. Ableitung bestimmen.
[mm] (m_2=2x, [/mm] wobei x die gesuchte Stelle sein wird).

[mm] m_1 [/mm] und [mm] m_2 [/mm] setzt du in die oben genannte Gleichung ein und dann kannst du nach x auflösen!

Bezug
                
Bezug
Tangente und Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Di 12.02.2008
Autor: Mone25

Hallo,

also für h habe ich dann y=1/3x + 2/3 d.h. Steigung=1/3
für die Parabel ist die Steigung dann -1.

Wie soll ich dann einsetzen? 1/3x * -1x = -1 ?

(m1 * m2 ist immer -1 nehme ich an?)

Bezug
                        
Bezug
Tangente und Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Di 12.02.2008
Autor: Teufel

Hi!

Ja, [mm] m_1=\bruch{1}{3} [/mm] erstmal.

Aber die Ableitung der Parabel ist [mm] f'(x)=-x+3=m_2! [/mm]

Dann hast du [mm] m_1*m_2=\bruch{1}{3}*(-x+3)=-1,w [/mm] as du nach x auflösen musst!
Und ja, das gilt immer, bei orthogonalen Anstiegen!

Bezug
                                
Bezug
Tangente und Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Di 12.02.2008
Autor: Mone25

achso, ich dachte von der 1. Ableitung wäre -1 die Steigung...

Vielen Dank für deine Hilfe Teufel!!! :-)

Bezug
                                        
Bezug
Tangente und Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:15 Di 12.02.2008
Autor: Teufel

Kein Ding!

Du hättest natürlich auch so rangehen können:

Du berechnest erstmal nur [mm] m_1. [/mm]

[mm] m_1=\bruch{1}{3} [/mm]

Dann die Formel [mm] m_1*m_2=-1 [/mm]

[mm] \Rightarrow \bruch{1}{3}*m_2=-1 \gdw m_2=-3. [/mm]
Dann müsstest du noch eine Stelle an der Parabel mit der Steigung -3 finden. Vielleicht leuchtetd as auch etwas mehr ein!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de