Tangente zu einer Kugel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Gegeben:
Kugel K: [mm] [\overrightarrow{OX}-\vektor{2 \\ -1 \\ -3}]^{2}=9
[/mm]
Gerade: [mm] g:\overrightarrow{OX}=\vektor{5 \\ -1 \\ 3}+\lambda\vektor{1 \\ -1 \\ 4}
[/mm]
1) Ermittle eine Parameterdarstellung einer Geraden h, welche Passante zur Kugel K und parallel zu g ist.
2)1) Ermittle eine Parameterdarstellung einer Geraden i, welche Tangente zur Kugel K und parallel zu g ist. |
Hallo,
ich habe mit der Aufgabe leider einige Probleme, da mir der Ansatz komplett fehlt.
Das einzige was ich zu den gesuchten Geraden sagen kann, ist dass sie den Richtungsvektor [mm] \vec{v}=\vektor{1 \\ -1 \\ 4} [/mm] haben.
Die erste Aufgabe habe ich mehr oder weniger durch Raten gelöst; da habe ich den Stützvektor [mm] \vektor{0 \\ 0 \\ 0} [/mm] gewählt und die Gerade ist zufällig eine Passante.
Bei der Tangente ist die Wahrscheinlichkeit, das ganze durch Raten zu lösen wohl ziemlich gering. Deswegen würde ich mich freuen, wenn ihr mir bei diesen Aufgaben etwas helfen könntet!
Vielen Dank!
Auch wenn ich nicht weiß, ob man so etwas benötigt, aber das ganze muss ohne Tangentialebenen gehen. Das Thema kommt erst später; die Aufgabe muss also auch anders zu lösen sein....
|
|
|
|
Hallo madeinindia,
> Gegeben:
> Kugel K: [mm][\overrightarrow{OX}-\vektor{2 \\ -1 \\ -3}]^{2}=9[/mm]
>
> Gerade: [mm]g:\overrightarrow{OX}=\vektor{5 \\ -1 \\ 3}+\lambda\vektor{1 \\ -1 \\ 4}[/mm]
>
> 1) Ermittle eine Parameterdarstellung einer Geraden h,
> welche Passante zur Kugel K und parallel zu g ist.
>
> 2)1) Ermittle eine Parameterdarstellung einer Geraden i,
> welche Tangente zur Kugel K und parallel zu g ist.
> Hallo,
>
> ich habe mit der Aufgabe leider einige Probleme, da mir der
> Ansatz komplett fehlt.
> Das einzige was ich zu den gesuchten Geraden sagen kann,
> ist dass sie den Richtungsvektor [mm]\vec{v}=\vektor{1 \\ -1 \\ 4}[/mm]
> haben.
>
> Die erste Aufgabe habe ich mehr oder weniger durch Raten
> gelöst; da habe ich den Stützvektor [mm]\vektor{0 \\ 0 \\ 0}[/mm]
> gewählt und die Gerade ist zufällig eine Passante.
>
> Bei der Tangente ist die Wahrscheinlichkeit, das ganze
> durch Raten zu lösen wohl ziemlich gering. Deswegen würde
> ich mich freuen, wenn ihr mir bei diesen Aufgaben etwas
> helfen könntet!
>
> Vielen Dank!
>
> Auch wenn ich nicht weiß, ob man so etwas benötigt, aber
> das ganze muss ohne Tangentialebenen gehen. Das Thema kommt
> erst später; die Aufgabe muss also auch anders zu lösen
> sein....
Ich denke mal "laut":
[Dateianhang nicht öffentlich]
Du suchst Paralellen zu der gegebenen Geraden, die
1. mitten durch die Kugel
2. als Tangente die Kugel berühren.
Alle diese Geraden stehen daher auch senkrecht auf dem Lot, das man von M auf die Geraden fällen kann.
Sie unterscheiden sich lediglich durch den Abstand, den sie von M haben.
Klickt's jetzt?
Gruß informix
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Ja vielen Dank!
Ich habs jetzt soweit geschafft.
Also ich denke mal das ich den Lösungsweg genommen habe, auf den du mich mit der Skizze bringen wolltest.
Ich habe den Vektor bestimmt, der orthogonal auf g steht und durch den Mittelpunkt geht; davon den Einheitsvektor bestimmt und den dann mit +3 oder -3 multipliziert. Für die Passante muss dann ja nur gelten, dass der Faktor >|3| ist.
Vielen Dank!
|
|
|
|