www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Tangente zu einer Kugel
Tangente zu einer Kugel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente zu einer Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Do 18.01.2007
Autor: madeinindia

Aufgabe
Gegeben:
Kugel K: [mm] [\overrightarrow{OX}-\vektor{2 \\ -1 \\ -3}]^{2}=9 [/mm]
Gerade: [mm] g:\overrightarrow{OX}=\vektor{5 \\ -1 \\ 3}+\lambda\vektor{1 \\ -1 \\ 4} [/mm]

1) Ermittle eine Parameterdarstellung einer Geraden h, welche Passante zur Kugel K und parallel zu g ist.

2)1) Ermittle eine Parameterdarstellung einer Geraden i, welche Tangente zur Kugel K und parallel zu g ist.

Hallo,

ich habe mit der Aufgabe leider einige Probleme, da mir der Ansatz komplett fehlt.
Das einzige was ich zu den gesuchten Geraden sagen kann, ist dass sie den Richtungsvektor [mm] \vec{v}=\vektor{1 \\ -1 \\ 4} [/mm] haben.

Die erste Aufgabe habe ich mehr oder weniger durch Raten gelöst; da habe ich den Stützvektor [mm] \vektor{0 \\ 0 \\ 0} [/mm] gewählt und die Gerade ist zufällig eine Passante.

Bei der Tangente ist die Wahrscheinlichkeit, das ganze durch Raten zu lösen wohl ziemlich gering. Deswegen würde ich mich freuen, wenn ihr mir bei diesen Aufgaben etwas helfen könntet!

Vielen Dank!


Auch wenn ich nicht weiß, ob man so etwas benötigt, aber das ganze muss ohne Tangentialebenen gehen. Das Thema kommt erst später; die Aufgabe muss also auch anders zu lösen sein....

        
Bezug
Tangente zu einer Kugel: Tipps
Status: (Antwort) fertig Status 
Datum: 21:12 Do 18.01.2007
Autor: informix

Hallo madeinindia,

> Gegeben:
>  Kugel K: [mm][\overrightarrow{OX}-\vektor{2 \\ -1 \\ -3}]^{2}=9[/mm]
>  
> Gerade: [mm]g:\overrightarrow{OX}=\vektor{5 \\ -1 \\ 3}+\lambda\vektor{1 \\ -1 \\ 4}[/mm]
>  
> 1) Ermittle eine Parameterdarstellung einer Geraden h,
> welche Passante zur Kugel K und parallel zu g ist.
>  
> 2)1) Ermittle eine Parameterdarstellung einer Geraden i,
> welche Tangente zur Kugel K und parallel zu g ist.
>  Hallo,
>  
> ich habe mit der Aufgabe leider einige Probleme, da mir der
> Ansatz komplett fehlt.
>  Das einzige was ich zu den gesuchten Geraden sagen kann,
> ist dass sie den Richtungsvektor [mm]\vec{v}=\vektor{1 \\ -1 \\ 4}[/mm]
> haben.
>  
> Die erste Aufgabe habe ich mehr oder weniger durch Raten
> gelöst; da habe ich den Stützvektor [mm]\vektor{0 \\ 0 \\ 0}[/mm]
> gewählt und die Gerade ist zufällig eine Passante.
>  
> Bei der Tangente ist die Wahrscheinlichkeit, das ganze
> durch Raten zu lösen wohl ziemlich gering. Deswegen würde
> ich mich freuen, wenn ihr mir bei diesen Aufgaben etwas
> helfen könntet!
>  
> Vielen Dank!
>  
> Auch wenn ich nicht weiß, ob man so etwas benötigt, aber
> das ganze muss ohne Tangentialebenen gehen. Das Thema kommt
> erst später; die Aufgabe muss also auch anders zu lösen
> sein....

Ich denke mal "laut":
[Dateianhang nicht öffentlich]

Du suchst Paralellen zu der gegebenen Geraden, die
1. mitten durch die Kugel
2. als Tangente die Kugel berühren.

Alle diese Geraden stehen daher auch senkrecht auf dem Lot, das man von M auf die Geraden fällen kann.
Sie unterscheiden sich lediglich durch den Abstand, den sie von M haben.

Klickt's jetzt?

Gruß informix

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Tangente zu einer Kugel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:13 Fr 19.01.2007
Autor: madeinindia

Ja vielen Dank!

Ich habs jetzt soweit geschafft.

Also ich denke mal das ich den Lösungsweg genommen habe, auf den du mich mit der Skizze bringen wolltest.

Ich habe den Vektor bestimmt, der orthogonal auf g steht und durch den Mittelpunkt geht; davon den Einheitsvektor bestimmt und den dann mit +3 oder -3 multipliziert. Für die Passante muss dann ja nur gelten, dass der Faktor >|3| ist.

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de