www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Tangenten
Tangenten < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 So 24.09.2006
Autor: Lijana

Aufgabe
Bestimme die Gleichung der Tangente an f(x)= x², die durch den Punkt (2,-5) verläuft

Wir haben dafür immer die Gleichung t: [mm] y-y_{0}= m(x-x_{0})Da [/mm] derPunkt ja  nicht auf der Funktion liegt kann man ihn ja nicht ohne weiteres in die Gleichung einsetzen.. Deshalb würde ich für y ersteinmal die Funtion einsetzen. ja aber was muss ich dann für m und x einsetzen? da weis ich gerade nicht mehr weiter.

Danke schonmal für eure Hilfe

Ich habe die Frage in keinem weiteren Forum gestellt.

        
Bezug
Tangenten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 So 24.09.2006
Autor: Stefan-auchLotti

[mm] \mbox{Hi,} [/mm]

[mm] \mbox{Dass die Koord. des Punktes nicht die Gleichung der Parabel erfüllen, ist richtig,} [/mm]
[mm] \mbox{doch sie erfüllen die Gleichung der Tangente:}$ [/mm] y=mx+n $

$ [mm] \Rightarrow [/mm] -5=2m+n [mm] \gdw [/mm] -5-2m=n [mm] \Rightarrow [/mm] y=mx-5-2m $

[mm] \mbox{Jetzt kannst du die Gleichung der Parabel mit der Tangentengleichung gleichsetzen:} [/mm]

[mm] x^2=mx-5-2m [/mm]

[mm] \gdw x^2-mx+5+2m=0 [/mm]

[mm] \gdw x_{1;2}=\bruch{m}{2}\pm\wurzel{\bruch{m^2}{4}-5-2m} [/mm]

[mm] \mbox{Du willst ja eine Tangente bestimmen. Das heißt, es darf nur einen Schnittpunkt mit dem Graphen geben.} [/mm]
[mm] \mbox{Folge: Die Diskriminante muss = 0 sein (Klar warum?).} [/mm]

[mm] \bruch{m^2}{4}-5-2m=0 [/mm]

[mm] \gdw m^2-20-8m=0 [/mm]

[mm] m_{1;2}=4\pm\wurzel{16+20} [/mm]

[mm] \gdw m_{1}=10 \vee m_{2}=-2 [/mm]

[mm] \Rightarrow y_{1}=10x+n \wedge y_{2}=-2x+n [/mm]

[mm] \mbox{Die Gleichung des Punktes muss ja immer noch die Gleichungen der (mittlerweile) zwei herausbekommenen Tangenten erfüllen.} [/mm]

$P [mm] \in G_{y_{1}} \wedge [/mm] P [mm] \in G_{y_{2}}$ [/mm]

$-5=10*2+n [mm] \Rightarrow y_{1}=10x-25 \wedge [/mm] -5=-2*2+n [mm] \Rightarrow y_{2}=-2x-1$ [/mm]

[mm] \mbox{Das wär's auch schon. Noch Fragen?} [/mm]

[mm] \mbox{Viele Grüße,} [/mm]

[mm] \mbox{Stefan.} [/mm]

Bezug
        
Bezug
Tangenten: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Mi 27.09.2006
Autor: Sigrid

Hallo Ljana,

> Bestimme die Gleichung der Tangente an f(x)= x², die durch
> den Punkt (2,-5) verläuft
>  Wir haben dafür immer die Gleichung t: [mm]y-y_{0}= m(x-x_{0})Da[/mm]
> derPunkt ja  nicht auf der Funktion liegt kann man ihn ja
> nicht ohne weiteres in die Gleichung einsetzen.. Deshalb
> würde ich für y ersteinmal die Funtion einsetzen. ja aber
> was muss ich dann für m und x einsetzen? da weis ich gerade
> nicht mehr weiter.

Einen für quadratische Funktionen sehr eleganten Ansatz hat dir Stafan ja bereits gegeben.
Eine Alternative ist die folgende:
Duhast ja bereits die Geradengleichung:

[mm]y-y_{0}= m(x-x_{0}) [/mm]

Also brauchst du drei Gleichungen, um m, [mm] x_0 [/mm] und [mm] y_0 [/mm] zu bestimmen:

I $ m = [mm] f'(x_0) [/mm] $

II $ [mm] y_0 [/mm] = [mm] f(x_0) [/mm] $

III $ -5 - [mm] y_0 [/mm] = m (2 - [mm] x_0) [/mm] $    Da der Punkt (2;-5) auf der Tangente liegt.

Gruß
Sigrid

>  
> Danke schonmal für eure Hilfe
>  
> Ich habe die Frage in keinem weiteren Forum gestellt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de