www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Tangenten an Kreis legen
Tangenten an Kreis legen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten an Kreis legen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 Fr 05.01.2007
Autor: TopHat

Aufgabe
Bestimmen Sie die Gleichungen der beiden Tangenten vom Punkt P an den Kreis K mit dem Radius r um den Mittelpunkt M.
a) r= 5, M(4|1), P(11|2)

Danke schon mal im Voraus für eure Hilfe!

Also den Kreis aufzustellen ist kein Problem, da kann ich ja entweder
[mm] (x-4)^{2} [/mm] + [mm] (y-1)^{2} [/mm] = 25 schreiben oder das auch in Vektorform
[mm] (\vektor{x \\ y}-\vektor{4 \\ 1})^{2}= [/mm] 25 nehmen.

und ich weiß dass die Gerade [mm] \overline{PS}, [/mm] die eine Tangente an K ist mit dem Berührpunkt S, mit dem Vektor von M zu S [mm] (S\in [/mm] X) ein Skalarprodukt von 0 bilden muss.

Allerdings bin ich jetzt völlig überfragt, wie ich  ich jetzt konkret auf ein S kommen kann.

Bitte helft mir.

        
Bezug
Tangenten an Kreis legen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:46 Fr 05.01.2007
Autor: Barncle

Hey,

also ich glaube dir zumindest etwas weiter helfen zu können:


Ich wüde mir erstmal einen Punkt S ansetzen mit den Koordinaten

   [mm] {s_x \choose s_y} [/mm]

Gut der Vektor von S zu P ist nun


   [mm] {11 - s_x \choose 2 - s_y} [/mm]
  
Und der vom Mittelpunkt zu S ist

   [mm] {s_x - 4 \choose s_y - 1} [/mm]

Gut wie du schon gesagt hast muss das innere Produkt dieser beiden Vektoren 0 sein >> deine erste Gleichung

die zweite Gleichung erhältst du aus der Bedingung, dass S ein Element des Kreises sein muss >> [mm] s_x [/mm] und [mm] s_y [/mm] müssen die Kreisgleichung erfüllen.

Nun hast du 2 Gleichungen für 2 Unbekannte, und weil die nochquadratisch sind, ham sie auch 2 Lösungen >> 2 Punkte >>  2 Tangenten

Ich hoffe das reicht die für die Lösung

Grüße Gregor

Bezug
                
Bezug
Tangenten an Kreis legen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:37 Sa 06.01.2007
Autor: TopHat

Ja, danke schön.

Bezug
        
Bezug
Tangenten an Kreis legen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:13 Sa 06.01.2007
Autor: riwe

eine andere nette möglichkeit wäre, rechnerisch den konstruktiven weg nachzuvollziehen:
bestimme mit pythagoras den radius des thaleskreises um P, schneide ihn mit K, damit bekommst du die beiden berührungspunkte [mm] B_1 [/mm] und [mm] B_2 [/mm] und kannst die beiden tangentengleichungen aufstellen.
[mm]R^{2}=d(M,P)^{2}-r^{2} \to R = 5[/mm]
[mm] (x-4)^{2}+(y-1)^{2}=25 [/mm]
[mm] (x-11)^{2}+(y-2)^{2}=25 [/mm]
subtrahieren ergibt g: y = 54 - 7x
wieder einsetzen führt auf die quadratische gleichung
[mm] x^{2}-15x+56=0 [/mm] und damit auf [mm] B_1(8/-2) [/mm] und [mm] B_2(7/5). [/mm]

(die berührungspunkte bekommst du auch direkt als schnittpunkt der polaren geraden g mit K: (x-4)(11-4) +(y-1)(1-2) = 25, siehe oben)


Bezug
                
Bezug
Tangenten an Kreis legen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:36 Sa 06.01.2007
Autor: TopHat

danke schön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de