www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Tangenten und Normale
Tangenten und Normale < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten und Normale: Problem mit der Berechnung
Status: (Frage) beantwortet Status 
Datum: 06:57 Do 16.12.2004
Autor: BingoBongo

Hallo,
da ich hiermit mein erstes Posting mache, hier auch gleich der gewünschte Hinweis: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe ein Problem mit der Berechnung einer Tangente, welche senkrecht zu einer anderen Geraden verläuft und sinnvollerweise natürlich eine bestimmte Funktion berühren soll.
Die Aufgabe war Teil eines Tests in Mathe vor 3 Wochen, bei der ich allerdings total versagt habe, und deshalb jetzt hier die Frage nach nem Lösungsansatz.
Also gegeben war die Funktion: f(x) = -2x²+9x-12
und die Gerade g(x) = -5x+12
Die Aufgabenstellung sah folgendermaßen aus: Berechnen Sie die Gleichung der Tangente t an f, die senkrecht zu g verläuft.[...]

Ich habe mir also als Lösungsansatz gedacht, erstmal die Senkrechte der Funktion g zu ermitteln und danach dann diese Gerade so zu verschieben, dass es ne Tangente an f wird.
Ich habe also von dieser Senkrechten erstmal den Anstieg ermittelt; der liegt bei 1/5  nur leider hört es dann auch schon auf mit dem Verständnis. Ich habe keine Ahnung, wie ich zu den anderen erforderlichen Größen kommen soll, um diese Senkrechte berechnen zu können.
Kann mir da bitte jemand einen Tipp geben, wie ich da vorgehen muß?

Bingo


        
Bezug
Tangenten und Normale: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 Do 16.12.2004
Autor: FriedrichLaher

Hallo Bingo

Den Anstieg hast Du richtig ermittelt
und
dieser soll ja auch der Anstieg der
gesuchten Tangente sein

Bestimme die Ableitung Deiner f(x), also f'(x)
und
Löse dann die Gleichung f'(b) = 1/5
nach b auf.

b ist dann das x des Berührungspunktes
DER Tangente an f(x) die die Steigung 1/5 hat.
Die
Gleichung der Tangente selbst,
in
"Punkt-Richtungsform" ist dann

t(x) = f(b) + (x-b)*(1/5)

Bezug
        
Bezug
Tangenten und Normale: erledigt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:45 Do 16.12.2004
Autor: BingoBongo

Vielen Dank für diesen Ansatz, damit habe ich nen Denkanstoß bekommen.
Ich habs zwar etwas anders angegangen, aber das Ergebnis dürfte da das gleiche sein.
Mit dem b in der Funktion f für x den dazugehörigen y-Wert berechnen und am Schluß noch das m der Tangentenfunktion, so das die Lösung wohl lautet t(x) = 1/5x - 2,32

Bingo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de