www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Tangenteneinheitsvektor
Tangenteneinheitsvektor < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenteneinheitsvektor: Berechnung,Bedeutung,
Status: (Frage) beantwortet Status 
Datum: 17:00 Mi 27.01.2010
Autor: Balendilin

Ich möchte den Tangenteneinheitsvektor der Neilschen Parabel berechnen. Die Neilsche Parabel hat die Parameterdarstellung

[mm] \gamma(t)=\vektor{t^2 \\ t^3} [/mm]

Ein Bild der Kurve findet ihr hier:
http://www.matheplanet.com/matheplanet/nuke/html/uploads/8/7723_Neilsche_Parabel.PNG
(man kommt von unten rechts  und geht nach oben links)

Man sieht, dass sie eine Spitze bei t=0 hat. Diese Spitze will ich nun mit dem Tangenteneinheitsvektor berechnen:

[mm] T(t)=\frac{\gamma'(t)}{||\gamma'(t)||}=\frac{ \vektor{2t \\ 3t^2} }{\sqrt{4t^2+9t^4}}= \vektor{\frac{2}{\sqrt{4+9t^2}}{\frac{3t}{\sqrt{4+9t^2}}}} [/mm]

(der letzte Ausdruck soll auch ein Spaltenvektor sein, wird aber falsch angezeigt)
Nun passt das aber überhaupt nicht mehr zum Bild. Denn diese Tangente ändert in der x-Komponente bei t=0 nicht ihr Vorzeichen (was sie machen müsste) und ändert dagegen in der y-Komponente ihr Vorzeichen (was sie nicht machen dürfte).
Woran liegt das? Interpretiere ich diesen Tangenteneinheitsvektor nur falsch?

Vielen Dank schon mal für die Hilfe!

        
Bezug
Tangenteneinheitsvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Mi 27.01.2010
Autor: fred97


> Ich möchte den Tangenteneinheitsvektor der Neilschen
> Parabel berechnen. Die Neilsche Parabel hat die
> Parameterdarstellung
>  
> [mm]\gamma(t)=\vektor{t^2 \\ t^3}[/mm]
>  
> Ein Bild der Kurve findet ihr hier:
>  
> http://www.matheplanet.com/matheplanet/nuke/html/uploads/8/7723_Neilsche_Parabel.PNG
>  (man kommt von unten rechts  und geht nach oben links)
>  
> Man sieht, dass sie eine Spitze bei t=0 hat. Diese Spitze
> will ich nun mit dem Tangenteneinheitsvektor berechnen:
>  
> [mm]T(t)=\frac{\gamma'(t)}{||\gamma'(t)||}=\frac{ \vektor{2t \\ 3t^2} }{\sqrt{4t^2+9t^4}}= \vektor{\frac{2}{\sqrt{4+9t^2}}{\frac{3t}{\sqrt{4+9t^2}}}}[/mm]
>  
> (der letzte Ausdruck soll auch ein Spaltenvektor sein, wird
> aber falsch angezeigt)
>  Nun passt das aber überhaupt nicht mehr zum Bild. Denn
> diese Tangente ändert in der x-Komponente bei t=0 nicht
> ihr Vorzeichen (was sie machen müsste) und ändert dagegen
> in der y-Komponente ihr Vorzeichen (was sie nicht machen
> dürfte).
> Woran liegt das? Interpretiere ich diesen
> Tangenteneinheitsvektor nur falsch?

Nein, aber es ist immer das gleiche: [mm] $\wurzel{a^2} [/mm] = |a|$   !!!!!

Also: $ [mm] \sqrt{4t^2+9t^4}= [/mm] |t|* [mm] \wurzel{4+9t^2}$ [/mm]

FRED


>  
> Vielen Dank schon mal für die Hilfe!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de