www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Tangentengerade an die Menge
Tangentengerade an die Menge < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentengerade an die Menge: Idee
Status: (Frage) beantwortet Status 
Datum: 21:38 Do 05.02.2009
Autor: sisivy

Aufgabe
Berechen Sie die Tangentengerade an die Menge [mm] \{(x,y)€R^2: exp(x^2+y^2)= e^5\} [/mm] an der Stelle (1,2)

Ich weiß nicht wie ich die Aufgabe anfangen soll. Bitte helfe mir.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Tangentengerade an die Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Do 05.02.2009
Autor: glie


> Berechen Sie die Tangentengerade an die Menge [mm]\{(x,y)€R^2: exp(x^2+y^2)= e^5\}[/mm]
> an der Stelle (1,2)
>  Ich weiß nicht wie ich die Aufgabe anfangen soll. Bitte
> helfe mir.
>  

Hallo,

also die Bedingung [mm] e^{x^2+y^2}=e^5 [/mm]
ist gleichbedeutend zu [mm] x^2+y^2=5 [/mm]

Das stellt die Gleichung eines Kreises um den Ursprung mit Radius [mm] \wurzel{5} [/mm] dar.

Jetzt sollst du die Tangente an diesen Kreis im Punkt (1/2) erstellen.

Dazu wäre die Funktionsgleichung des Halbkreises auf dem der Punkt (1/2) liegt nützlich. Bekommst du die hin?

Gruß Christian

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>  


Bezug
                
Bezug
Tangentengerade an die Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Do 05.02.2009
Autor: sisivy

erstmal danke für schnelle antwort.. :)

meinen Sie Punkt (1,2) oder ?

wenn ja dann mache  so:

[mm] f(x)=sqrt(r^2-x^2) [/mm]

also

f(1) = sqrt( 4)
f(1) = 2

Was mache ich weiter :( ?

Kann man hier irgendwie Gradienten benutzen? Meine ich Ableitung nach x dann nach y?

Bezug
                        
Bezug
Tangentengerade an die Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Do 05.02.2009
Autor: glie


> erstmal danke für schnelle antwort.. :)
>  
> meinen Sie Punkt (1,2) oder ?

Ja

>  
> wenn ja dann mache  so:
>  
> [mm]f(x)=sqrt(r^2-x^2)[/mm]

Das sieht schonmal gut aus. Das ist die richtige Funktion.

>  
> also
>
> f(1) = sqrt( 4)
>  f(1) = 2

Das zeigt ja nur, dass der Punkt (1/2) auf dem Kreis liegt.

>  
> Was mache ich weiter :( ?

Jetzt brauchst du die Tangentensteigung.

>  
> Kann man hier irgendwie Gradienten benutzen? Meine ich
> Ableitung nach x dann nach y?

Möglich, aber das wäre mir zu umständlich, ich würde jetzt einfach die Ableitung der Funktion [mm] f(x)=\wurzel{5-x^2} [/mm] bestimmen.

Das ergibt [mm] f'(x)=\bruch{-x}{\wurzel{5-x^2}} [/mm]     (Kettenregel!)

Um jetzt die Steigung der Tangente im Punkt (1/2) zu bestimmen, brauchst du lediglich f'(1) bestimmen.

Dann sollte auch die Gleichung der Tangente kein Problem mehr sein. (y=m*x+t)

Gruß Christian

Bezug
                                
Bezug
Tangentengerade an die Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:11 Do 05.02.2009
Autor: sisivy

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de