www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Tangentialebene
Tangentialebene < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentialebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Fr 29.05.2009
Autor: nitramGuk

Aufgabe
[mm]f(x,y)=cos(\wurzel{\pi ^2 -x^2 -y^2})[/mm]; [mm]x^2+y^2\le \pi^2[/mm]; [mm]P_0=( \bruch{\pi}{3}, \bruch{2\pi}{3}, z_0)[/mm]
a) Bestimmen Sie die Gleichung der Tangentialebene an f(x,y) im Punkt [mm]P_0[/mm]
b) Berechnen Sie unter Verwendung der Gleichung für die Tangentialebene einen Näherungswert für z, den man erhalten würde, wenn man [mm]x_0[/mm] um 10% erhöht und [mm]y_0[/mm] gleichzeitig um 10% verringert
c) Welchen Anstieg hat die Tangente an f im Punkt [mm]P_0[/mm] in Richtung des Vektors [mm]\vec a = \begin{pmatrix} \pi \\ \bruch{4\pi}{3} \end{pmatrix}[/mm]

Hallo, hab leider nur zu a) 'nen Ansatz:

a)

Tangentialebene:

[mm]z - z_0 = f_x (x_0,y_0) * (x-x_0) + f_y(x_0,y_0) * (y-y_0)[/mm]

[mm]z_0 = f(x_0,y_0) = cos(\wurzel{\pi ^2 - \bruch{\pi ^2}{9} - \bruch{4\pi ^2}{9} }) = cos(\bruch{2}{3} \pi) = -0,5 [/mm]

[mm] f_x(x,y) = \bruch{ x*sin(\wurzel{\pi ^2-x^2-y^2}) }{ \wurzel{\pi ^2-x^2-y^2} }[/mm]
[mm] f_y(x,y) = \bruch{ y*sin(\wurzel{\pi ^2-x^2-y^2}) }{ \wurzel{\pi ^2-x^2-y^2} }[/mm]

Dann alles eingesetzt in die obere Formel:

[mm]z = \bruch{\wurzel{3}}{4}x + \bruch{\wurzel{3}}{2}y - \bruch{5\wurzel{3}\pi}{12} - 0,5[/mm]

Soweit sollte das stimmen.

b)

Also mit Hilfe des totalen Differentials wüsste ich, wie man das berechnen kann, aber mit der in a) ausgerechneten Formel?
Das tot. Diff. wird ja auch über die beiden partiellen Ableitungen berechnet, evtl heißt das nur, dass man die beiden verwenden soll aus a) ? [verwirrt]
Wenn man es doch mit der Tangentialebene berechnen kann, wäre nett, wenn Ihr mir das erklären könntet, wie.

c)

Also Anstieg der Tangente über [mm]f_x[/mm] bzw. [mm]f_y[/mm] geht ja, aber das ist ja nur in Richtung der Koordinatenachsen
(müsste ja den Vektoren: [mm]\begin{pmatrix}1\\ 0 \end{pmatrix}[/mm] bzw. [mm]\begin{pmatrix}0\\ 1 \end{pmatrix}[/mm] entsprechen ?)

Ich vermute mal, dass kann man sich dann aus den beiden zusammensetzen/herleiten, leider hab ich keine Ahnung, wie genau das funktioniert (und im Script nichts zu dem speziellen Fall gefunden). [keineahnung]

Grüße & Danke nitramGuk

Frage in keinem anderem Forum gestellt.

        
Bezug
Tangentialebene: Aufgabe a) b)
Status: (Antwort) fertig Status 
Datum: 16:43 Fr 29.05.2009
Autor: MathePower

Hallo nitramGuk,


> [mm]f(x,y)=cos(\wurzel{\pi ^2 -x^2 -y^2})[/mm]; [mm]x^2+y^2\le \pi^2[/mm];
> [mm]P_0=( \bruch{\pi}{3}, \bruch{2\pi}{3}, z_0)[/mm]
>  a) Bestimmen
> Sie die Gleichung der Tangentialebene an f(x,y) im Punkt
> [mm]P_0[/mm]
>  b) Berechnen Sie unter Verwendung der Gleichung für die
> Tangentialebene einen Näherungswert für z, den man erhalten
> würde, wenn man [mm]x_0[/mm] um 10% erhöht und [mm]y_0[/mm] gleichzeitig um
> 10% verringert
>  c) Welchen Anstieg hat die Tangente an f im Punkt [mm]P_0[/mm] in
> Richtung des Vektors [mm]\vec a = \begin{pmatrix} \pi \\ \bruch{4\pi}{3} \end{pmatrix}[/mm]
>  
> Hallo, hab leider nur zu a) 'nen Ansatz:
>  
> a)
>  
> Tangentialebene:
>  
> [mm]z - z_0 = f_x (x_0,y_0) * (x-x_0) + f_y(x_0,y_0) * (y-y_0)[/mm]
>  
> [mm]z_0 = f(x_0,y_0) = cos(\wurzel{\pi ^2 - \bruch{\pi ^2}{9} - \bruch{4\pi ^2}{9} }) = cos(\bruch{2}{3} \pi) = -0,5[/mm]
>  
> [mm]f_x(x,y) = \bruch{ x*sin(\wurzel{\pi ^2-x^2-y^2}) }{ \wurzel{\pi ^2-x^2-y^2} }[/mm]
>  
> [mm]f_y(x,y) = \bruch{ y*sin(\wurzel{\pi ^2-x^2-y^2}) }{ \wurzel{\pi ^2-x^2-y^2} }[/mm]
>  
> Dann alles eingesetzt in die obere Formel:
>  
> [mm]z = \bruch{\wurzel{3}}{4}x + \bruch{\wurzel{3}}{2}y - \bruch{5\wurzel{3}\pi}{12} - 0,5[/mm]
>  
> Soweit sollte das stimmen.


Hier stimmt alles. [ok]


>  
> b)
>  
> Also mit Hilfe des totalen Differentials wüsste ich, wie
> man das berechnen kann, aber mit der in a) ausgerechneten
> Formel?
>  Das tot. Diff. wird ja auch über die beiden partiellen
> Ableitungen berechnet, evtl heißt das nur, dass man die
> beiden verwenden soll aus a) ? [verwirrt]
>  Wenn man es doch mit der Tangentialebene berechnen kann,
> wäre nett, wenn Ihr mir das erklären könntet, wie.


Nun, setze für x den um 10 % erhöhten Wert gegenüber [mm]x_{0}[/mm]
und für y den um 10 % erniedrigten Wert gegenüber [mm]y_{0}[/mm] in die
Gleichung der Tangentialebene ein.


>  
> c)
>
> Also Anstieg der Tangente über [mm]f_x[/mm] bzw. [mm]f_y[/mm] geht ja, aber
> das ist ja nur in Richtung der Koordinatenachsen
> (müsste ja den Vektoren: [mm]\begin{pmatrix}1\\ 0 \end{pmatrix}[/mm]
> bzw. [mm]\begin{pmatrix}0\\ 1 \end{pmatrix}[/mm] entsprechen ?)
>  
> Ich vermute mal, dass kann man sich dann aus den beiden
> zusammensetzen/herleiten, leider hab ich keine Ahnung, wie
> genau das funktioniert (und im Script nichts zu dem
> speziellen Fall gefunden). [keineahnung]
>  
> Grüße & Danke nitramGuk
>  
> Frage in keinem anderem Forum gestellt.


Gruß
MathePower

Bezug
        
Bezug
Tangentialebene: Aufgabe c.)
Status: (Antwort) fertig Status 
Datum: 17:45 Fr 29.05.2009
Autor: Loddar

Hallo nitramGuk!


Sieh mal []hier oder []hier.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de