www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Tangentialebene
Tangentialebene < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentialebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:07 Mo 25.10.2010
Autor: Kuriger

Hallo mir leuchtet etwas nicht wirklich ein.

Ich habe eine Fläche/Ebene (oder scheint doch eine Fläche zu sein) im Raum gegeben, mit einem bekannten Punkt durch den die egsuchte Tangentialebene verlaufen soll.
Nun bestimme ich den Normalvektor, den ich mittels Gradient bestimmen.
Fläche lautet: f(x,y,z) = [mm] x^2 [/mm] + [mm] y^2 [/mm] + z -9 = 0, [mm] P_0 [/mm] (2,4,1)
Wenn eine Ebene wäre könnte ich das ganz einfach machen, denn der Normalvektor einer in Koordinaten geschriebene Ebene lässt sich ja direkt rauslesen. Aber eben ist offensichtlich keine Ebene, da x und y noch quadriert werden.

Nun zu meinem eigentlichen problem. Ich bestimme den Normalvektor (Gradienten) und einen Vektor auf der Fläche [mm] \vektor{x-2 \\ y - 4 \\ z -1} [/mm]

Damit diese beiden Vektoren rechtwinklig aufeinanderstehen muss ja gelten: Gradient * [mm] \vektor{x-2 \\ y - 4 \\ z -1} [/mm] = 0
Doch wieweshalb ist diese gLEICHUNG gerade eine Ebene? verstehe ich nicht..

Danke, gruss Kuriger

        
Bezug
Tangentialebene: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Mo 25.10.2010
Autor: M.Rex

Hallo

>  
> Nun zu meinem eigentlichen problem. Ich bestimme den
> Normalvektor (Gradienten) und einen Vektor auf der Fläche
> [mm]\vektor{x-2 \\ y - 4 \\ z -1}[/mm]
>  
> Damit diese beiden Vektoren rechtwinklig aufeinanderstehen
> muss ja gelten: Gradient * [mm]\vektor{x-2 \\ y - 4 \\ z -1}[/mm] =
> 0

Nein, wenn ich de Aufgebe richtig deute, ist der Gradient hier fehl am Platze. Zwei Vektoren stehen genau dann senkrecht aufeinander, wenn das Skalarprodukt der beiden Null ergibt.
Und wenn du das hier ausrechnest, solltest du eine Ebene in Koordinatenform bekommen.

Marius


Bezug
        
Bezug
Tangentialebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Mo 25.10.2010
Autor: Al-Chwarizmi


> Ich habe eine Fläche/Ebene (oder scheint doch eine Fläche
> zu sein) im Raum gegeben, mit einem bekannten Punkt durch
> den die egsuchte Tangentialebene verlaufen soll.
>  Nun bestimme ich den Normalvektor, den ich mittels
> Gradient bestimmen.
> Fläche lautet: f(x,y,z) = [mm]x^2[/mm] + [mm]y^2[/mm] + z -9 = 0, [mm]P_0[/mm]
> (2,4,1)



Hallo,

hast du bemerkt, dass der Punkt [mm] P_0 [/mm] gar nicht auf der
gegebenen Fläche liegt ?

Mit den gegebenen Daten müsste es unendlich viele
mögliche Tangentialebenen geben.

LG    Al-Chw.

Bezug
                
Bezug
Tangentialebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 Di 26.10.2010
Autor: weduwe

wenn man unterstellt, dass das [mm] P_0(2/2/1) [/mm] heißen soll:

[mm] \vec{n}=(\frac{\partial{f}}{\partial{x}},...)^T=(2x,2y,1)^T\to \vec{n}_{P_0}=(4,4,1)^T [/mm]

und T: [mm] (\vec{x}-\vektor{2\\2\\1})\cdot\vektor{4\\4\\1}=0 [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de