www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Tangentialebene (in Hesseform)
Tangentialebene (in Hesseform) < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentialebene (in Hesseform): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Mo 29.12.2014
Autor: KilaZ

Aufgabe
[mm] f(x,y)=4*ln(\bruch{x^2}{x^2+y^2}) [/mm]
-bestimme partielle Ableitungen, Gradient im Punkt [mm] x^{0}=(1,1) [/mm]
-bestimme Richtungsableitung von f im Punkt [mm] x^{0}=(1,1) [/mm] in Richtung [mm] e=(\bruch{1}{2}\wurzel{2},\bruch{1}{2}\wurzel{2}) [/mm]
-bestimme im Punkt [mm] (x^{0}, f(x^{0})) [/mm] = (1,1,f(1,1)) die Tangentialebene (in Hesseform) an die durch z = f(x,y) mit x,y > 0 erklärte Fläche

Hi,

ich komme beim 3. Punkt der obigen Aufgabe nicht weiter. Die ersten beiden konnte ich erfolgreich lösen:

-partiellen Ableitungen:
[mm] \bruch{\partial f}{\partial x} [/mm] = [mm] \bruch{8}{x}-\bruch{8x}{x^2+y^2} [/mm]
[mm] \bruch{\partial f}{\partial y} [/mm] = [mm] -\bruch{8y}{x^2+y^2} [/mm]

-Gradient:
grad [mm] f(x)=\vektor{ \bruch{8}{x}-\bruch{8x}{x^2+y^2} \\ -\bruch{8y}{x^2+y^2}} [/mm]
grad [mm] f(1,1)=\vektor{4 \\ -4} [/mm]

-Richtungsableitung
[mm] \bruch{\partial f}{\partial e}=\vektor{4 \\ -4}*\vektor{\bruch{1}{2}\wurzel{2} \\ \bruch{1}{2}\wurzel{2}}=0 [/mm]

Nun aber, wie gehe ich die letzte Aufgabe an?

Bin um jeden Tipp sehr froh!

Gruss

        
Bezug
Tangentialebene (in Hesseform): Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Mo 29.12.2014
Autor: abakus


> [mm]f(x,y)=4*ln(\bruch{x^2}{x^2+y^2})[/mm]
> -bestimme partielle Ableitungen, Gradient im Punkt
> [mm]x^{0}=(1,1)[/mm]
> -bestimme Richtungsableitung von f im Punkt [mm]x^{0}=(1,1)[/mm] in
> Richtung [mm]e=(\bruch{1}{2}\wurzel{2},\bruch{1}{2}\wurzel{2})[/mm]
> -bestimme im Punkt [mm](x^{0}, f(x^{0}))[/mm] = (1,1,f(1,1)) die
> Tangentialebene (in Hesseform) an die durch z = f(x,y) mit
> x,y > 0 erklärte Fläche
> Hi,

>

> ich komme beim 3. Punkt der obigen Aufgabe nicht weiter.
> Die ersten beiden konnte ich erfolgreich lösen:

>

> -partiellen Ableitungen:
> [mm]\bruch{\partial f}{\partial x}[/mm] =
> [mm]\bruch{8}{x}-\bruch{8x}{x^2+y^2}[/mm]
> [mm]\bruch{\partial f}{\partial y}[/mm] = [mm]-\bruch{8y}{x^2+y^2}[/mm]

>

> -Gradient:
> grad [mm]f(x)=\vektor{ \bruch{8}{x}-\bruch{8x}{x^2+y^2} \\ -\bruch{8y}{x^2+y^2}}[/mm]

>

> grad [mm]f(1,1)=\vektor{4 \\ -4}[/mm]

>

> -Richtungsableitung
> [mm]\bruch{\partial f}{\partial e}=\vektor{4 \\ -4}*\vektor{\bruch{1}{2}\wurzel{2} \\ \bruch{1}{2}\wurzel{2}}=0[/mm]

>

> Nun aber, wie gehe ich die letzte Aufgabe an?

>

> Bin um jeden Tipp sehr froh!

>

> Gruss

Hallo,
die partielle Ableitung nach x ist 4.
Das heißt doch: wenn du 1 Schritt in x-Richtung gehst, musst du 4 Schritte in z-Richtung gehen.
Analog musst du bei einem Schritt in y-Richtung -4 Schritte in z-Richtung gehen.
Mögliche Spannvektoren deiner Tangentialebene sind also [mm] \vektor{1 \\ 0\\4}[/mm] und [mm] \vektor{0 \\ 1\\-4}[/mm]. Ihr Vektorprodukt erzeugt dann einen Normalenvektor der T.-Ebene.

Bezug
                
Bezug
Tangentialebene (in Hesseform): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:23 Di 30.12.2014
Autor: KilaZ

Hi,

danke für deine Antwort!

Wenn ich das Vektorprodukt bilde bekomme ich folgendes:
[mm] \vektor{1 \\ 0 \\ 4} [/mm] x [mm] \vektor{0 \\ 1 \\ -4} [/mm] = [mm] \vektor{-4 \\ 4 \\ 1} [/mm]
d.h. meine Tangentialebene ist:
-4x+4y+1z=0

Ich soll das ganze ja in Hesseform angeben. Laut Skriptum ist die Hesse Matrix die Matrix der zweiten Ableitung von f.

Also f(x,y,z)=-4x+4y+1z nach x,y,z 2 mal ableiten und in Matrixform anschreiben?

Vielen Dank!

Bezug
                        
Bezug
Tangentialebene (in Hesseform): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:39 Di 30.12.2014
Autor: abakus


> Hi,

>

> danke für deine Antwort!

>

> Wenn ich das Vektorprodukt bilde bekomme ich folgendes:
> [mm]\vektor{1 \\ 0 \\ 4}[/mm] x [mm]\vektor{0 \\ 1 \\ -4}[/mm] = [mm]\vektor{-4 \\ 4 \\ 1}[/mm]

>

> d.h. meine Tangentialebene ist:
> -4x+4y+1z=0

>

> Ich soll das ganze ja in Hesseform angeben. Laut Skriptum
> ist die Hesse Matrix die Matrix der zweiten Ableitung von
> f.

>

> Also f(x,y,z)=-4x+4y+1z nach x,y,z 2 mal ableiten und in
> Matrixform anschreiben?

>

> Vielen Dank!

Hallo,
Das hat aus meiner Sicht (ich kann mich irren) nichts mit Hessematrix zu tun. Es geht nach meiner Meinung um folgendes:
[]
de.wikipedia.org/wiki/Hessesche_Normalform#Darstellung_2


Bezug
                                
Bezug
Tangentialebene (in Hesseform): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Di 30.12.2014
Autor: KilaZ

Hi,

hm, da ansonsten im Skriptum nirgends etwas von Hessform steht, werde ich es so machen wie du mir vorgeschlagen hast.

Vielen Dank!
Gruss

Bezug
                                
Bezug
Tangentialebene (in Hesseform): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Do 01.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Tangentialebene (in Hesseform): Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Mo 29.12.2014
Autor: HJKweseleit


> [mm]f(x,y)=4*ln(\bruch{x^2}{x^2+y^2})[/mm]
>  -bestimme partielle Ableitungen, Gradient im Punkt
> [mm]x^{0}=(1,1)[/mm]
>  -bestimme Richtungsableitung von f im Punkt [mm]x^{0}=(1,1)[/mm] in
> Richtung [mm]e=(\bruch{1}{2}\wurzel{2},\bruch{1}{2}\wurzel{2})[/mm]
>  -bestimme im Punkt [mm](x^{0}, f(x^{0}))[/mm] = (1,1,f(1,1)) die
> Tangentialebene (in Hesseform) an die durch z = f(x,y) mit
> x,y > 0 erklärte Fläche
>  Hi,
>  
> ich komme beim 3. Punkt der obigen Aufgabe nicht weiter.
> Die ersten beiden konnte ich erfolgreich lösen:
>  
> -partiellen Ableitungen:
>  [mm]\bruch{\partial f}{\partial x}[/mm] =
> [mm]\bruch{8}{x}-\bruch{8x}{x^2+y^2}[/mm]

[mm] \red{------------------------------------------------------------} [/mm]
Diese partielle Ableitung ist nicht korrekt.

Es ist   [mm]\bruch{\partial f}{\partial x} = \bruch{8y^2}{x(x^2+y^2)}[/mm]

[mm] \red{------------------------------------------------------------} [/mm]


Bezug
                
Bezug
Tangentialebene (in Hesseform): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 Mo 29.12.2014
Autor: chrisno

[mm]\bruch{\partial f}{\partial x}[/mm] = [mm]\bruch{8}{x}-\bruch{8x}{x^2+y^2}[/mm] = [mm]\bruch{8(x^2+y^2)}{x(x^2+y^2)}-\bruch{8x^2}{x(x^2+y^2)}[/mm] = [mm]\bruch{8(x^2+y^2)-8x^2}{x(x^2+y^2)}[/mm] = [mm]\bruch{8y^2}{x(x^2+y^2)}[/mm]


Bezug
                        
Bezug
Tangentialebene (in Hesseform): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:04 Do 01.01.2015
Autor: HJKweseleit

Donnerlittchen! Hab ich gar nicht bemerkt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de