www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Taylorentwicklung
Taylorentwicklung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Fr 08.08.2008
Autor: mikemodanoxxx

Aufgabe
[Dateianhang nicht öffentlich]

Hallo,

ich verstehe leider nicht, wie diese Taylorformel für mehrere Veränderliche funktionieren soll. Kann mir das mal jemand erklären? Am Besten anhand dieses Beispiels:

[Dateianhang nicht öffentlich]

h ist doch der Vektor x - [mm] x_{0} [/mm] oder? Ich verstehe vor allem nicht wo die gemischten Glieder später herkommen, also zb [mm] f_{xy}(x,y) [/mm]

ciao, Simon.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Fr 08.08.2008
Autor: Merle23

Ich schreibe mal den Teil der Summe der allgemeinen Formel für [mm] | \alpha |=2 [/mm] und [mm] n=2 [/mm] hin, wobei [mm] x=(1,1) [/mm] der Entwicklungspunkt ist und [mm] h=(h_1,h_2) [/mm] wie in der Formel.

[mm] \summe_{| \alpha |=2} \frac{1}{\alpha !}*(D^{\alpha}f)((1,1))*h^{\alpha}=\underbrace{\frac{1}{2!*0!}*\frac{\partial^2 f}{\partial_{xx} f}((1,1))*h_1^2*h_2^0}_{\alpha = (2,0)} + \underbrace{\frac{1}{1!*1!}*\frac{\partial^2 f}{\partial_{xy} f}((1,1))*h_1^1*h_2^1}_{\alpha = (1,1)} + \underbrace{\frac{1}{0!*2!}*\frac{\partial^2 f}{\partial_{yy} f}((1,1))*h_1^0*h_2^2}_{\alpha = (0,2)} [/mm].

Bezug
                
Bezug
Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Fr 08.08.2008
Autor: mikemodanoxxx

Danke, jetzt habe ich glaube ich verstanden was dieser Multiindex bedeutet.

Bei [mm] \alpha [/mm] = 3 hätte ich zb die Tupel (3,0) (0,3) (2,1) und (1,2) richtig? Das ganze ist dann dazu gedacht, dass man die gleichen Ableitungen nicht immer so oft hinschreiben muss (wegen [mm] f_{xyx} [/mm] = [mm] f_{xxy} [/mm] usw). Right?

Eine Frage hätte ich noch. Leitet man bei diesem Therm:
[mm] \frac{\partial^2 f}{\partial_{y}\partial_{x}} [/mm]

Zuerst nach x oder zuerst nach y ab? Spielt zwar in den meisten Fällen keine Rolle, interessiert mich aber trotzdem mal.

Bezug
                        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Fr 08.08.2008
Autor: MathePower

Hallo mikemodanoxxx,

> Danke, jetzt habe ich glaube ich verstanden was dieser
> Multiindex bedeutet.
>  
> Bei [mm]\alpha[/mm] = 3 hätte ich zb die Tupel (3,0) (0,3) (2,1) und
> (1,2) richtig? Das ganze ist dann dazu gedacht, dass man
> die gleichen Ableitungen nicht immer so oft hinschreiben
> muss (wegen [mm]f_{xyx}[/mm] = [mm]f_{xxy}[/mm] usw). Right?


Genau, so isses.


>  
> Eine Frage hätte ich noch. Leitet man bei diesem Therm:
>  [mm]\frac{\partial^2 f}{\partial_{y}\partial_{x}}[/mm]
>  
> Zuerst nach x oder zuerst nach y ab? Spielt zwar in den
> meisten Fällen keine Rolle, interessiert mich aber trotzdem
> mal.


Wie Du richtig bemerkt hast, spielt das in den meisten Fällen keine Rolle.

Formal gesehen ist

[mm]\bruch{\partial^{2} f}{\partial y \partial x}=\bruch{\partial } {\partial y}\left(\bruch{\partial f}{\partial x}\right)[/mm]

Hier wird zuerst nach x und dann nach y abgeleitet.

Gruß
MathePower

Bezug
                                
Bezug
Taylorentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:12 Fr 08.08.2008
Autor: mikemodanoxxx

ok danke

Bezug
        
Bezug
Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Do 21.08.2008
Autor: jack0

Hallo,
ich habe eine Frage zu diesem Vektor h. Wie wird der denn berechnet?
Gruß Peter

Bezug
                
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Do 21.08.2008
Autor: angela.h.b.

Hallo,

es ist in der oben angegebenen Taylorformel das x der Entwicklungspunkt, und das h ist der Differenzvektor zwischen der Stelle, für die man sich gerade interessiert und dem Entwicklungspunkt x.

Gehen wir mal kurz zum eindimensionalen Fall:

das n_te Taylorpolynom von  f im Entwicklungspunkt a an der Stelle y ist  [mm] T_{f,a}(y)=\summe_{k=0}^{n}\bruch{f^{(k)}(a)}{k!}(y-a)^k. [/mm]

Jetzt benennen wir ein bißchen um.

Mit
x:=a
h:=y-a

erhält man [mm] T_{f,x}(x+h)=\summe_{k=0}^{n}\bruch{f^{(k)}(x)}{k!}h^k, [/mm] und damit sind wir beim eindimensionalen Analogon zur Darstellung im Eingangspost.


Schauen wir uns nun die dort gestellte Aufgabe an: der Entwicklungspunkt ist x=(1 ; 1).

Die Taylorentwicklung im Punkt (1;1) ist

    [mm] T((1,1)+(h_1,h_2)) [/mm] = [mm] \sum_{|\alpha| \ge 0}^{}{\frac{\mathrm{D}^{\alpha}f(\mathbf{(1;1)})}{\alpha !}(h_1;h_2)^{\alpha}} [/mm]

Zu guter Letzt soll man noch den Fehler im Punkt  (1; 0.8) ausrechnen, also den Fehler für h=(0; -0.2).


Gruß v. Angela




Bezug
        
Bezug
Taylorentwicklung: Tipp bei Definition
Status: (Frage) beantwortet Status 
Datum: 13:30 Sa 23.08.2008
Autor: BieneJulia

Aufgabe
Wir haben folgende Definition eines k-ten Taylorpolynoms im Skript:

Sei U [mm] \subset IR^n, [/mm] f: U [mm] \subset IR^\mapsto [/mm] IR k-mal diffbar, u [mm] \in [/mm] U.

[mm] T^k_{u} [/mm] f  (x) : = [mm] \summe_{\alpha \le k} \bruch{D^{\alpha }f(u) }{\alpha!} x^{\alpha} [/mm] heißt das k-te Taylorpolynom von f in u.


Frage zur Definiton des Taylorpolynoms (im Übrigen hab ich das Betragszeichen im Index unten bei der Summe nicht hinbekommen - es muss natürlich Betrag von Alpha kleiner gleich k heißen!):

Ich verstehe irgendwie nicht, wieso da nur [mm] x^{\alpha} [/mm] steht. Ich dachte zunächst, der Dozent hätte vielleicht das u einfach nur vergessen, also dass es eigentlich [mm] (x-u)^{\alpha} [/mm] heißen müsse, aber das wird konsequent so weiter fortgesetzt. Kann mir jemand erklären, wieso die oben gepostete Definiton äquivalent zu der Definition ist, die man sonst überall zum Taylorpolynom k-ten Grades (mehrdimensional) findet? Also eben mit besagtem [mm] (x-u)^{\alpha} [/mm] ??

Vielen Dank für eure Hilfe! Lg,
Julia

Bezug
                
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Sa 23.08.2008
Autor: angela.h.b.


> Wir haben folgende Definition eines k-ten Taylorpolynoms im
> Skript:
>  
> Sei U [mm]\subset IR^n,[/mm] f: U [mm]\subset IR^\mapsto[/mm] IR k-mal
> diffbar, u [mm]\in[/mm] U.
>  
> [mm]T^k_{u}[/mm] f  (x) : = [mm]\summe_{\alpha \le k} \bruch{D^{\alpha }f(u) }{\alpha!} x^{\alpha}[/mm]
> heißt das k-te Taylorpolynom von f in u.
>  
>
> Frage zur Definiton des Taylorpolynoms (im Übrigen hab ich
> das Betragszeichen im Index unten bei der Summe nicht
> hinbekommen - es muss natürlich Betrag von Alpha kleiner
> gleich k heißen!):
>  
> Ich verstehe irgendwie nicht, wieso da nur [mm]x^{\alpha}[/mm]
> steht. Ich dachte zunächst, der Dozent hätte vielleicht das
> u einfach nur vergessen, also dass es eigentlich
> [mm](x-u)^{\alpha}[/mm] heißen müsse, aber das wird konsequent so
> weiter fortgesetzt. Kann mir jemand erklären, wieso die
> oben gepostete Definiton äquivalent zu der Definition ist,
> die man sonst überall zum Taylorpolynom k-ten Grades
> (mehrdimensional) findet? Also eben mit besagtem
> [mm](x-u)^{\alpha}[/mm] ??

Hallo,

ich kann mir zwei Möglichkeiten vorstellen, und beide haben etwas mit "Fehler" zu tun.

1. Da sollte eigentlich stehen [mm] T^k_{u}f [/mm]  (u+x) : = [mm]\summe_{|\alpha| \le k} \bruch{D^{\alpha }f(u) }{\alpha!} x^{\alpha}[/mm]

2. Da sollte stehen  [mm] T^k_{u}f [/mm]  (x) : = [mm]\summe_{\alpha \le k} \bruch{D^{|\alpha| }f(u) }{\alpha!} (x-u)^{\alpha}[/mm]

Gruß v. Angela

Bezug
                        
Bezug
Taylorentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:52 Mo 25.08.2008
Autor: BieneJulia

Hallo!

Sorry, dass ich mich erst jetzt melde.
Vielen Dank, dann wird der Dozent da wohl wirklich nen "Fehler" gemacht haben.

Lg, Julia

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de