www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Taylorentwicklung -2 Variablen
Taylorentwicklung -2 Variablen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung -2 Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:56 Mi 14.03.2012
Autor: Strawberry1

Aufgabe
Unter Verwendung bekannter TAYLOR-Polynome bestimme man das TAYLOR-sche Polynom [mm] P_3 [/mm] der Funktion

[mm] f(x,y)=e^x \cos y [/mm]

im Entwicklungspunkt [mm] P(0,0) [/mm]

Hallo!
Bei dieser eigentlich einfachen Aufgabe habe ich folgendes Problem:

Also ich weiß ja, dass die Taylorreihen für die Exponentialfunktion (in einer Variablen also für [mm] e^x [/mm]) mit

[mm] P_n=\summe_{k=0}^{n}\bruch{x^k}{k!} [/mm]

bzw. für [mm] \cos x [/mm] mit

[mm] P_n=\summe_{k=0}^{n}\bruch{(-1)^k}{(2k)!} x^{2k} [/mm]

vereinfacht anschreiben kann.

Nun verstehe ich jedoch nicht, wie ich das Ganze auf mein Beispiel umlegen kann. Denn nach 2 Variablen wird ja anders entwickelt als nach einer. Bzw. hier benötige ich ja immer die Partiellen Ableitungen... **Verwirrung**

Natürlich könnte ich bei diesem Beispiel einfach alle Partiellen Ableitungen (bis zum Grad 3) bilden und in die Allgemeine Formel zur TAYLOR-Entwicklung einsetzen und würde ebenfalls schnell zum richtigen Ergebnis gelangen, nur das ist eben nicht gefragt.

Ich hoffe jemand kann mir helfen.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Taylorentwicklung -2 Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:50 Mi 14.03.2012
Autor: korbinian

Hallo,
ich vermute, das geht mit der Produktformel von Cauchy
Gruß  korbinian

Bezug
        
Bezug
Taylorentwicklung -2 Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Mi 14.03.2012
Autor: fred97

Du kannst auch übers Komplexe gehen:

Mit   z=x+iy ist

$e^xcos(y)= [mm] Re(e^z)= Re(\summe_{k=0}^{\infty}\bruch{z^k}{k!} [/mm] )= [mm] \summe_{k=0}^{\infty}\bruch{Re(z^k)}{k!} [/mm] $

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de