Taylorpolynom < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:04 Di 29.01.2008 | Autor: | NoWay |
Aufgabe | Sei [mm] I\subset \IR [/mm] ein Intervall und f: [mm] I\to \IR [/mm] eine n-mal differenzierbare Funktion. In a [mm] \in [/mm] I exisitiert (f^(n))'(a) =:f^(n+1)(a). Es sei [mm] T_{k}(f;a) [/mm] das k-te Taylorpolynom von f zur Stelle a.
1) Sei r(x) für [mm] x\not=a [/mm] definiert durch [mm] f(x)-T_{n+1}(f;a)(x)=r(x)(x-a)^{n+1}
[/mm]
Zeigen Sie: [mm] \limes_{n\rightarrow\ a} [/mm] r(x)=0
Tipp: Benutzen Sie die Regel von l'Hopital
2)Sei f'(a)=...=f^(n)(a)=0, aber [mm] f^{n+1}(a)\not=0 [/mm] Zeigen Sie: Ist n+1 gerade, so hat f bei a ein strenges lokales Extremun, und ist n+1 ungerade, so hat f bei a einen strengen Wendepunkt. |
Ich habe bei dieser Aufgabe nicht den kleinsten Durchblick!
Ich weiß nur wenn man l'Hopital auf eine Funktion mit einem Bruch anwendet und den Nenner und Zähler einzeln ableitet liegt die abgeleitete Funktion auch im Grenzbereich, also haben den gleichen Grenzwert, aber was bringt mir das denn bitte für die Aufgabe???
Außerdem kann das nicht sein, wenn ich diese Funktion immer wieder ableite, dass dort irgendwann 0 heraus kommt?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:21 Di 29.01.2008 | Autor: | leduart |
Hallo
r(x)= ist doch ein Bruch, dessen GW du willst. und im Zähler und Nenner gehen gegen 0, also darfst du L'hopital anwenden, und wieder und wieder ! n+1 mal!
Wenn ab der k-ten Ableitung alle anderen 0 sind ist die Funktion ein Polynom vom Grade k-1. und dann ist die linke Seite der Def. gleichung für r(x) einfach 0
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:37 Di 29.01.2008 | Autor: | NoWay |
Ok, dann habe ich l'Hopital verstanden, aber was muss ich jetzt mit der Aufgabe machen bzw. wie kann ich das anwenden??
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:18 Di 29.01.2008 | Autor: | leduart |
Hallo
Die Frage ist schwer verständlich: die Antwort hatte ich schon gegeben: solange immer wieder L'Hopital anwenden, bis da nicht mehr 0/0 steht!
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:57 Di 29.01.2008 | Autor: | NoWay |
Ja, ok, danke, dann probiere ich das jetzt mal aus!!!
|
|
|
|