www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Taylorpolynom
Taylorpolynom < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynom: Frage
Status: (Frage) beantwortet Status 
Datum: 20:27 Do 09.06.2005
Autor: sebl

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Freunde, bin grad am alte Klausuren lösen und weiß nicht ob mein Ergebnis richtig ist.

Aufgabe: Bestimmen sie zu zu [mm] f(x)=e^{x^2-x} [/mm] das Taylorpolynom p(x) bis zum Grad 2.Ordnung an der Stelle xo=0.

Mein Vorgehen war wie folgt:

1. Bilden der 1 und 2 Ableitung der Funktion.
[mm] f´(x)=(2x-1)*e^{x^2-1} [/mm]
f´´(x)= [mm] 2*e(x^2-x)+(2x-1)^2*e^{x^2-x} [/mm]

wenn ich diese richtig in die Formel einsetze erhalte ich für p(x).

[mm] p(x)=1+(2x-1)*e^{x^2-x}*(x-xo)+2*(2x-1)^2*e^{x^2-x}*(x-xo) [/mm]

setze nun xo=0 ein und erhalte folgenden ausdruck.

p(x)=2(xo-x)

bestimmt käse was ich gemacht hab, oder?
mathe macht echt spass, wenn nur keine klausuren wären.

gruas und danke

basti

        
Bezug
Taylorpolynom: Nachrechnen
Status: (Antwort) fertig Status 
Datum: 21:04 Do 09.06.2005
Autor: MathePower

Hallo sebl,

> Aufgabe: Bestimmen sie zu zu [mm]f(x)=e^{x^2-x}[/mm] das
> Taylorpolynom p(x) bis zum Grad 2.Ordnung an der Stelle
> xo=0.
>  
> Mein Vorgehen war wie folgt:
>  
> 1. Bilden der 1 und 2 Ableitung der Funktion.
>  [mm]f´(x)=(2x-1)*e^{x^2-1}[/mm]
>  f´´(x)= [mm]2*e(x^2-x)+(2x-1)^2*e^{x^2-x}[/mm]
>  
> wenn ich diese richtig in die Formel einsetze erhalte ich
> für p(x).
>  
> [mm]p(x)=1+(2x-1)*e^{x^2-x}*(x-xo)+2*(2x-1)^2*e^{x^2-x}*(x-xo)[/mm]
>  
> setze nun xo=0 ein und erhalte folgenden ausdruck.
>  
> p(x)=2(xo-x)

das Taylorpolynom n.ten Grades um den Entwicklungspunkt [mm]x_{0}[/mm] lautet für eine Funktion f(x):

[mm]p_{n}(x)\; = \;\sum\limits_{k = 0}^{n} {\frac{{f^k (x_0 )}}{{k!}}} \;\left( {x\; - \;x_{0} } \right)^{k} [/mm]

Gruß
MathePower


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de