www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Taylorreihe und Konsistenzord.
Taylorreihe und Konsistenzord. < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe und Konsistenzord.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:27 Mo 06.07.2009
Autor: Zerwas

Aufgabe
Zeige, dass das Einfache-Runge-Kutta-Verfahren
[mm] \eta_{k+1}=\eta_k+h*\frac{1}{6}*(k_1+4*k_2+k_3) [/mm]
mit
[mm] k_1 [/mm] = f(t, [mm] \eta_k) [/mm]
[mm] k_2 [/mm] = [mm] f(t+\frac{h}{2}, \eta_k [/mm] + [mm] \frac{h}{2}k_1) [/mm]
[mm] k_3 [/mm] = f(t +h, [mm] \eta_k [/mm] + [mm] h(-k_1 [/mm] + [mm] 2k_2) [/mm]
ein Einschrittverfahren dritter Ordnung ist.

Um die Ordnung eines Einschrittverfahrens zu ermitteln betrachte ich den Konsistenzfehler [mm] \tau(h; [/mm] t, y(t), f) := [mm] \frac{1}{h}*(y(t+h) -y(t)-h*\Phi(h;t,y(t),f) [/mm]

Um hier zu ermitteln wie groß dei Ordnug des Fehlers ist muss ich die die gegebenen Funktionen y(t+h) und [mm] \Phi [/mm] Taylor-Entwickeln

y(t+h) = y(t) + h*y'(t) + [mm] \frac{h^2}{2}*y''(t) [/mm] + [mm] O(h^3) [/mm]
= y(t) + h* f(t, y(t)) + [mm] \frac{h^2}{2}*(f_t [/mm] + [mm] f_y*f)(t,y(t)) [/mm]

Beim Runge Kutta Verfahren betrachte ich die einzelnen [mm] k_i [/mm] erst einmal getrennt:
[mm] k_1 [/mm] = f(t, y(t)) = ...
hier beginnen jetzt meine Probleme was Taylorentwickle ich hier wie?

Ich wäre Dankbar wenn mir hier jmd weiterhelfen könnte.

Danke und Gruß
Zerwas

Ich habe diese Frage auf keinem anderen Forum auf anderen Internetseiten gestellt.

        
Bezug
Taylorreihe und Konsistenzord.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Mo 06.07.2009
Autor: MathePower

Hallo Zerwas,

> Zeige, dass das Einfache-Runge-Kutta-Verfahren
>  [mm]\eta_{k+1}=\eta_k+h*\frac{1}{6}*(k_1+4*k_2+k_3)[/mm]
>  mit
>  [mm]k_1[/mm] = f(t, [mm]\eta_k)[/mm]
>  [mm]k_2[/mm] = [mm]f(t+\frac{h}{2}, \eta_k[/mm] + [mm]\frac{h}{2}k_1)[/mm]
>  [mm]k_3[/mm] = f(t +h, [mm]\eta_k[/mm] + [mm]h(-k_1[/mm] + [mm]2k_2)[/mm]
>  ein Einschrittverfahren dritter Ordnung ist.
>  Um die Ordnung eines Einschrittverfahrens zu ermitteln
> betrachte ich den Konsistenzfehler [mm]\tau(h;[/mm] t, y(t), f) :=
> [mm]\frac{1}{h}*(y(t+h) -y(t)-h*\Phi(h;t,y(t),f)[/mm]
>  
> Um hier zu ermitteln wie groß dei Ordnug des Fehlers ist
> muss ich die die gegebenen Funktionen y(t+h) und [mm]\Phi[/mm]
> Taylor-Entwickeln
>  
> y(t+h) = y(t) + h*y'(t) + [mm]\frac{h^2}{2}*y''(t)[/mm] + [mm]O(h^3)[/mm]
>  = y(t) + h* f(t, y(t)) + [mm]\frac{h^2}{2}*(f_t[/mm] +
> [mm]f_y*f)(t,y(t))[/mm]
>  
> Beim Runge Kutta Verfahren betrachte ich die einzelnen [mm]k_i[/mm]
> erst einmal getrennt:
>  [mm]k_1[/mm] = f(t, y(t)) = ...
>  hier beginnen jetzt meine Probleme was Taylorentwickle ich
> hier wie?

Zunächst einmal gibt es bei [mm]k_{1}[/mm] nichts zu entwickeln.

Erst [mm]k_{2}[/mm] mußt Du in eine Taylorreihe  um  [mm]\left(t,\eta_{k}\right)[/mm] entwickeln.


>  
> Ich wäre Dankbar wenn mir hier jmd weiterhelfen könnte.
>  
> Danke und Gruß
>  Zerwas
>  
> Ich habe diese Frage auf keinem anderen Forum auf anderen
> Internetseiten gestellt.


Gruß
MathePower

Bezug
                
Bezug
Taylorreihe und Konsistenzord.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Mo 06.07.2009
Autor: Zerwas

Okay danke erstmal.

Aber die wahrscheinlich dumme Frage: Warum ist bei [mm] k_1 [/mm] nichts zu entwickeln?

Und wie entwickle ich dann [mm] k_2 [/mm] und [mm] k_3 [/mm] um (t, [mm] \eta_k) [/mm] ?

Entwickle ich nicht eigentlich um [mm] (t+\frac{h}{2}, \eta_k [/mm] + [mm] \frac{h}{2}f(t,\eta_k) [/mm] ? oder verdrehe ich hier was?

Dann bekomme ich ja:

$ [mm] k_2 [/mm] $ = $ [mm] f(t+\frac{h}{2}, \eta_k [/mm] $ + $ [mm] \frac{h}{2}*f(t,\eta_k)) [/mm] $

= [mm] f(t,\eta_k) [/mm] + [mm] \frac{h}{2}*(f_t [/mm] + [mm] f_y*f) [/mm] + [mm] \frac{h^2}{8}*(f_{tt} [/mm] + [mm] 2*f_{ty}f [/mm] + [mm] f_{yy}*f^2) [/mm] + [mm] \frac{h^3}{48}*(f_{ttt} [/mm] + [mm] 3*f_{tty}f [/mm] + [mm] 3*f_{tyy}f^2 [/mm] + [mm] f_{yyy}f^3) [/mm]

und eben noch länger bei [mm] k_3 [/mm]

Passt das so?

Danke und Gruß Zerwas

Bezug
                        
Bezug
Taylorreihe und Konsistenzord.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Mo 06.07.2009
Autor: MathePower

Hallo Zerwas,

> Okay danke erstmal.
>  
> Aber die wahrscheinlich dumme Frage: Warum ist bei [mm]k_1[/mm]
> nichts zu entwickeln?


Weil Du Dich hier um keinen konkreten Punkt entwickeln kannst.


>
> Und wie entwickle ich dann [mm]k_2[/mm] und [mm]k_3[/mm] um (t, [mm]\eta_k)[/mm] ?
>
> Entwickle ich nicht eigentlich um [mm](t+\frac{h}{2}, \eta_k[/mm] +
> [mm]\frac{h}{2}f(t,\eta_k)[/mm] ? oder verdrehe ich hier was?


Da verdrehst Du was.


>  
> Dann bekomme ich ja:
>  
> [mm]k_2[/mm] = [mm]f(t+\frac{h}{2}, \eta_k[/mm] + [mm]\frac{h}{2}*f(t,\eta_k))[/mm]
>
> = [mm]f(t,\eta_k)[/mm] + [mm]\frac{h}{2}*(f_t[/mm] + [mm]f_y*f)[/mm] +
> [mm]\frac{h^2}{8}*(f_{tt}[/mm] + [mm]2*f_{ty}f[/mm] + [mm]f_{yy}*f^2)[/mm] +
> [mm]\frac{h^3}{48}*(f_{ttt}[/mm] + [mm]3*f_{tty}f[/mm] + [mm]3*f_{tyy}f^2[/mm] +
> [mm]f_{yyy}f^3)[/mm]
>  
> und eben noch länger bei [mm]k_3[/mm]
>  
> Passt das so?


Ja, das passt.


>  
> Danke und Gruß Zerwas


Gruß
MathePower


Bezug
                                
Bezug
Taylorreihe und Konsistenzord.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Mo 06.07.2009
Autor: Zerwas

Aber wieso habe ich dann [mm] \frac{h}{2} [/mm] statt nur h?

Genauer meine Taylorformel lautet ja:
f(t+h) = [mm] \sum_{k = 0}^\infty{\frac{h^k}{k!}*f^{(k)}(t)} [/mm]

Wenn ich jetzt um [mm] (t,\eta_k) [/mm] entwickle sollte ich ja vor den jeweiligen Ableitungen einmal [mm] \frac{h^0}{1} [/mm] dann [mm] \frac{h^1}{1} [/mm] dann [mm] \frac{h^2}{2} [/mm] usw stehen haben.

Ich habe ja aber viel größere Were im Nenner nämlich [mm] \frac{\frac{h}{2}^k}{k!} [/mm]

Wo kommen die dann her? ... Bzw. wo steh ich auf dem Schlauch?

Bezug
                                        
Bezug
Taylorreihe und Konsistenzord.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Mo 06.07.2009
Autor: MathePower

Hallo Zerwas,

> Aber wieso habe ich dann [mm]\frac{h}{2}[/mm] statt nur h?
>  
> Genauer meine Taylorformel lautet ja:
>  f(t+h) = [mm]\sum_{k = 0}^\infty{\frac{h^k}{k!}*f^{(k)}(t)}[/mm]
>  
> Wenn ich jetzt um [mm](t,\eta_k)[/mm] entwickle sollte ich ja vor
> den jeweiligen Ableitungen einmal [mm]\frac{h^0}{1}[/mm] dann
> [mm]\frac{h^1}{1}[/mm] dann [mm]\frac{h^2}{2}[/mm] usw stehen haben.
>  
> Ich habe ja aber viel größere Were im Nenner nämlich
> [mm]\frac{\frac{h}{2}^k}{k!}[/mm]
>  
> Wo kommen die dann her? ... Bzw. wo steh ich auf dem
> Schlauch?  


Hier entwicklest Du ja [mm]f\left(t+\bruch{h}{2}}\right)[/mm] in eine Taylorreihe:

[mm]f(t+\bruch{h}{2}) =\sum_{k = 0}^\infty{\frac{\left(h/2\right)^k}{k!}*f^{(k)}(t)}[/mm]


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de