www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Taylorreihe von cos(exp (z))
Taylorreihe von cos(exp (z)) < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe von cos(exp (z)): Korrektur
Status: (Frage) überfällig Status 
Datum: 17:04 Fr 12.12.2008
Autor: grenife

Aufgabe
Bestimmen Sie die Taylorreihe um $0$ der Funktion [mm] $f:=\cos\circ\exp$ [/mm] und geben Sie deren Konvergenzradius an.

Hallo zusammen,

wollte kurz meinen Lösungsansatz skizzieren und wäre wieder dankbar, wenn jemand diesen kommentieren könnte, bevor ich in eine Sackgasse renne:-)

Prinzipiell würde ich zwei Wege sehen, zum einen könnte ich sturr die Potenzreihen für die Funktionen aufschreiben und ineinanderschachteln. Da müsste ich aber vermutlich einiges an Umformungen vornehmen, die möglicherweise nicht gerade trivial sind.

Als andere Möglichkeit würde ich die direkte Bestimmung der Taylor-Koeffizienten [mm] $\frac{f^{(n)}(0)}{n!}$ [/mm] ansehen, wobei ich aber nicht wirklich ein Entstehungsgesetz bei den Ableitungen von [mm] $\cos\circ\exp$ [/mm] erkennen kann (der Beweis müsste ja auch induktiv erfolgen):

[mm] $f(0)=\cos(\exp(0))=\cos(1)$ [/mm]
[mm] $f'(0)=-\sin(\exp(0))\cdot \exp(0)=-\sin(1)$ [/mm]
[mm] $f''(0)=-\cos(\exp(0))\cdot\exp(0)\cdot\exp(0)-\sin(\exp(0))\cdot\exp(0)=-\cos(1)-\sin(1)$ [/mm]

Vielen Dank für Eure Mühe und viele Grüße
Gregor


        
Bezug
Taylorreihe von cos(exp (z)): Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Fr 12.12.2008
Autor: Al-Chwarizmi


> Bestimmen Sie die Taylorreihe um [mm]0[/mm] der Funktion
> [mm]f:=\cos\circ\exp[/mm] und geben Sie deren Konvergenzradius an.


> Prinzipiell würde ich zwei Wege sehen, zum einen könnte ich
> stur die Potenzreihen für die Funktionen aufschreiben und
> ineinanderschachteln. Da müsste ich aber vermutlich einiges
> an Umformungen vornehmen, die möglicherweise nicht gerade
> trivial sind.

> Als andere Möglichkeit würde ich die direkte Bestimmung der
> Taylor-Koeffizienten [mm]\frac{f^{(n)}(0)}{n!}[/mm] ansehen, wobei
> ich aber nicht wirklich ein Entstehungsgesetz bei den
> Ableitungen von [mm]\cos\circ\exp[/mm] erkennen kann (der Beweis
> müsste ja auch induktiv erfolgen):
>  
> [mm]f(0)=\cos(\exp(0))=\cos(1)[/mm]
> [mm]f'(0)=-\sin(\exp(0))\cdot \exp(0)=-\sin(1)[/mm]
>  
> [mm]f''(0)=-\cos(\exp(0))\cdot\exp(0)\cdot\exp(0)-\sin(\exp(0))\cdot\exp(0)=-\cos(1)-\sin(1)[/mm]
>  
> Vielen Dank für Eure Mühe und viele Grüße
>  Gregor


Hallo Gregor,

man kann beide Wege versuchen. Zuerst schien mir der erste
hoffnungslos kompliziert. Aber dann merkte ich, dass auch der
zweite Weg mit den Ableitungen wegen der fortgesetzt komplexer
werdenden Anwendung von Produktregel und Kettenregel nicht
gerade vergnüglich ist.

So kehrte ich zum ersten Weg zurück und habe gemerkt, dass
der vielleicht doch nicht so schlimm ist.

Es ist

      [mm] cos(u)=1-\bruch{u^2}{2!}+\bruch{u^4}{4!}-\bruch{u^6}{6!}+\bruch{u^8}{8!}- [/mm] .......

      und   [mm] e^x=1+x+\bruch{x^2}{2!}+\bruch{x^3}{3!}+\bruch{x^4}{4!}+ [/mm] .......

Das Einsetzen der zweiten Reihe für jedes in der ersten Reihe
stehende u wäre tatsächlich eine fürchterliche Sache, die uns
aber glücklicherweise erspart wird, weil [mm] (e^x)^k=e^{k*x} [/mm] ist !

Es gilt

  $\ [mm] f(x)=cos(e^x)=1-\bruch{e^{2*x}}{2!}+\bruch{e^{4*x}}{4!}-\bruch{e^{6*x}}{6!}+\bruch{e^{8*x}}{8!}- [/mm] .......$

     $\ =\ 1$

      $\ [mm] -\bruch{1}{2!}*(1+2*x+\bruch{(2*x)^2}{2!}+\bruch{(2*x)^3}{3!}+\bruch{(2*x)^4}{4!}+ [/mm] .......)$

      $\ [mm] +\bruch{1}{4!}*(1+4*x+\bruch{(4*x)^2}{2!}+\bruch{(4*x)^3}{3!}+\bruch{(4*x)^4}{4!}+ [/mm] .......)$

      $\ [mm] -\bruch{1}{6!}*(1+6*x+\bruch{(6*x)^2}{2!}+\bruch{(6*x)^3}{3!}+\bruch{(6*x)^4}{4!}+ [/mm] .......)$

      $\ [mm] +\bruch{1}{8!}*(1+8*x+\bruch{(8*x)^2}{2!}+\bruch{(8*x)^3}{3!}+\bruch{(8*x)^4}{4!}+ [/mm] .......)$

      etc.

Sammelt man nun die Potenzen von x mit gleichen Exponenten,
so erhält man:

    $\ f(x)\ =\ [mm] (1-\bruch{1}{2!}+\bruch{1}{4!}-\bruch{1}{6!}+\bruch{1}{8!}- [/mm] .......)$

         [mm] +x*(-\bruch{2}{2!}+\bruch{4}{4!}-\bruch{6}{6!}+\bruch{8}{8!}- [/mm] .......)

         [mm] +\bruch{x^2}{2!}*(-\bruch{2^2}{2!}+\bruch{4^2}{4!}-\bruch{6^2}{6!}+\bruch{8^2}{8!}- [/mm] .......)

         [mm] +\bruch{x^3}{3!}*(-\bruch{2^3}{2!}+\bruch{4^3}{4!}-\bruch{6^3}{6!}+\bruch{8^3}{8!}- [/mm] .......)

         [mm] +\bruch{x^4}{4!}*(-\bruch{2^4}{2!}+\bruch{4^4}{4!}-\bruch{6^4}{6!}+\bruch{8^4}{8!}- [/mm] .......)

         etc.

Nun werden die Koeffizienten der Taylorreihe T(x) selbst durch
Reihen dargestellt:

Setzen wir [mm] T(x)=\summe_{k=0}^{\infty}t_k*x^k [/mm] , so gilt:

         $\ [mm] t_0=1-\bruch{1}{2!}+\bruch{1}{4!}-\bruch{1}{6!}+\bruch{1}{8!}- [/mm] .......\ =\ cos(1)$

         $\ [mm] t_1=-\bruch{2}{2!}+\bruch{4}{4!}-\bruch{6}{6!}+\bruch{8}{8!}- .......=-\bruch{1}{1!}+\bruch{1}{3!}-\bruch{1}{5!}+\bruch{1}{7!}- [/mm] .......\ =\ -sin(1)$


         $\ [mm] t_k=\bruch{1}{k!}*\summe_{i=1}^{\infty}\bruch{(-2*i)^{k}}{(2*i)!}$ [/mm]       $\ [mm] (k\ge [/mm] 1)$


Bei den Methoden zur Bestimmung des Konvergenzradius'
kenne ich mich nicht so aus. Ich vermute aber, dass er
hier unendlich ist.


LG  



Bezug
                
Bezug
Taylorreihe von cos(exp (z)): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:15 Sa 13.12.2008
Autor: felixf

Hallo zusammen

> Bei den Methoden zur Bestimmung des Konvergenzradius'
>  kenne ich mich nicht so aus. Ich vermute aber, dass er
>  hier unendlich ist.

Ist er auch, und mit etwas mehr Wissen ueber die Funktionentheorie kann man das auch direkt sagen ohne nachdenken zu muessen [mm] ($\cos \circ \exp$ [/mm] ist eine ganze Funktion).

LG Felix


Bezug
        
Bezug
Taylorreihe von cos(exp (z)): Ableitungen an der Stelle x=0
Status: (Antwort) fertig Status 
Datum: 14:14 Sa 13.12.2008
Autor: Al-Chwarizmi


> Als andere Möglichkeit würde ich die direkte Bestimmung der
> Taylor-Koeffizienten [mm]\frac{f^{(n)}(0)}{n!}[/mm] ansehen, wobei
> ich aber nicht wirklich ein Entstehungsgesetz bei den
> Ableitungen von [mm]\cos\circ\exp[/mm] erkennen kann (der Beweis
> müsste ja auch induktiv erfolgen):
>  
> [mm]f(0)=\cos(\exp(0))=\cos(1)[/mm]
> [mm]f'(0)=-\sin(\exp(0))\cdot \exp(0)=-\sin(1)[/mm]
> [mm]f''(0)=-\cos(\exp(0))\cdot\exp(0)\cdot\exp(0)-\sin(\exp(0))\cdot\exp(0)=-\cos(1)-\sin(1)[/mm]


Hallo  Gregor,

Um diese Liste der Ableitungen etwas weiter zu führen,
habe ich ein kleines Programm geschrieben, das die
jeweiligen Vorfaktoren von cos(1) und sin(1) in den
Ableitungen [mm] f^{(k)}(0) [/mm] berechnet. Dabei ist folgendes
herausgekommen:

      [mm]f(0)=\cos(1)[/mm]

      [mm]f'(0)=-\sin(1)[/mm]
  
      [mm]f''(0)=-\cos(1)-\sin(1)[/mm]

      [mm]f'''(0)=-3*\cos(1)[/mm]

      [mm]f^{(4)}(0)=-6*\cos(1)+5*\sin(1)[/mm]

      [mm]f^{(5)}(0)=-5*\cos(1)+23*\sin(1)[/mm]

      [mm]f^{(6)}(0)=33*\cos(1)+74*\sin(1)[/mm]

      [mm]f^{(7)}(0)=266*\cos(1)+161*\sin(1)[/mm]

      [mm]f^{(8)}(0)=1309*\cos(1)-57*\sin(1)[/mm]
        
          ..........


Dieser Anfang zeigt, dass es schwer fallen dürfte,
eine allgemeine Regel zu entdecken, die man dann
mittels vollständiger Induktion beweisen könnte.


LG     al-Chwarizmi  


Bezug
        
Bezug
Taylorreihe von cos(exp (z)): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 16.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de