www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fachdidaktik" - Teilermenge
Teilermenge < Fachdidaktik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fachdidaktik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilermenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 Do 13.05.2010
Autor: Beliar

Aufgabe
Bestimme Teilermenge von 392, Hasse Diagramm

Hallo, jetzt zeigt sich was passiert wenn man die Vorlesung verpasst hat.
Also die Frage betrifft das Diagramm. Ich hoffe dass die Teilermenge von mir richtig bestimmt wurde, T= (1,2,4,7,8,14,28,49,56,98,196,392).
mein Diagramm wurde so aussehen:
       393
196 98 56
49 28 14 8
   7   4   2
        1
sollte das richtig sein, könnte mir dann jemand erklären warum das so ist.
Danke für jeden Tip
Beliar

        
Bezug
Teilermenge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Do 13.05.2010
Autor: Marcel

Hallo,

> Bestimme Teilermenge von 392, Hasse Diagramm
>  Hallo, jetzt zeigt sich was passiert wenn man die
> Vorlesung verpasst hat.
>  Also die Frage betrifft das Diagramm. Ich hoffe dass die
> Teilermenge von mir richtig bestimmt wurde, T=
> (1,2,4,7,8,14,28,49,56,98,196,392).
>  mein Diagramm wurde so aussehen:
>         393
>   196 98 56
>  49 28 14 8
>     7   4   2
>          1
>  sollte das richtig sein, könnte mir dann jemand erklären
> warum das so ist.
>  Danke für jeden Tip
> Beliar

Dein Hasse-Diagramm stimmt so nicht (du hast auch 393 anstatt 392 geschrieben, aber das ist nur ein Vertipper). 98 ist ja auch ein Teiler von 196. []Hier [mm] ($\leftarrow$ klick it!) findest Du eine sehr sehr gute Anleitung, wie Du das Hasse-Diagramm selbst zu erstellen hast (Beitrag von jayjay83 (JJ)), und [/mm]  []hier [mm] ($\leftarrow$ klick it!) kannst Du es nochmal selbst kontrollieren (lassen). Beste Grüße, Marcel [/mm]

Bezug
                
Bezug
Teilermenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:05 Do 13.05.2010
Autor: Beliar

Tja, die Erklärung habe ich gelesen (nicht Verstanden), ich brauche den Teilerverband ohne Potenzen. Wo ist den in meinem Diagramm der/die Fehler?

Bezug
                        
Bezug
Teilermenge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Do 13.05.2010
Autor: Marcel

Hallo,

> Tja, die Erklärung habe ich gelesen (nicht Verstanden),
> ich brauche den Teilerverband ohne Potenzen. Wo ist den in
> meinem Diagramm der/die Fehler?

ich kenne mich damit nicht wirklich aus, daher weiß ich nicht, ob das, was ich nun mache, auch wirklich das ist, was Du wissen willst. (Ich habe mich innerhalb meines Studiums nie mit Hassediagrammen beschäftigt!) Denn was Du mit "Teilerverband ohne Potenzen" meinst, weiß ich gerade nicht und ich weiß nicht, wie sich das Hasse-Diagramm dadurch verändert. Aber zur Vorgehensweise:
392 hat die Primteiler 2 und 7. Wenn ich mir die von Dir vorgeschlagene Menge der Teiler von 392 angucke, so sehe ich, dass für 392 bzgl. der [mm] $2\,$ [/mm] die "höchste Potenz" [mm] $3\,$ [/mm] ist ($392$ ist durch [mm] $2^3=8$ [/mm] teilbar; vgl. auch JJs Anleitung).
Bzgl. der [mm] $7\,$ [/mm] ist die höchste Potenz [mm] $2\,.$ [/mm] Also hat das Hasse-Diagramm folgende Gitterstruktur (vgl. etwa []hier):

[mm] $$\begin{matrix}{\;8 - & \;? -& \;392\\ | & | & |\\\;4 - & \;? -& \;?\\ | & | & |\\\;2 - & \;? -& \;?\\ | & | & |\\\;1 - & \;7 -& \;49}\end{matrix}$$ [/mm]

Und jetzt verfahre so, wie es in dem Link beschrieben wird:
Ein fehlender Knoteneintrag (hier: ?) wird als KGV der Einträge der beiden Knoten berechnet, die unter diesem liegen und zudem mit dem Knoten, dessen Eintrag man gerade berechnen will, verbunden sind. (Damit das Wort "unter" hier Sinn macht, kannst Du Dir die oben stehende Matrix um 45° nach links gekippt vorstellen):
Also:

[mm] $\begin{matrix}{\;8 - & \;? -& \;392\\ | & | & |\\\;4 - & \;? -& \;?\\ | & | & |\\\;2 - & \;\red{?} -& \;?\\ | & | & |\\\;1 - & \;7 -& \;49}\end{matrix}$ [/mm]


[mm] $$\downarrow$$ [/mm]

[mm] $\begin{matrix}{\;8 - & \;? -& \;392\\ | & | & |\\\;4 - & \;? -& \;?\\ | & | & |\\\;2 - & \;\blue{14} -& \;\red{?}\\ | & | & |\\\;1 - & \;7 -& \;49}\end{matrix}$ [/mm]


[mm] $$\downarrow$$ [/mm]

[mm] $\begin{matrix}{\;8 - & \;? -& \;392\\ | & | & |\\\;4 - & \;? -& \;?\\ | & | & |\\\;2 - & \;14 -& \blue{98}\;\\ | & | & |\\\;1 - & \;7 -& \;49}\end{matrix}$ [/mm]


[mm] $$\downarrow$$ [/mm]

$$.$$
$$.$$
$$.$$

Wie Du siehst: Da hier [mm] $3\,$ [/mm] die höchste Potenz $p [mm] \in \IN_0\,$ [/mm] ist, so dass [mm] $2^p$ [/mm] ein Teiler von $392$ ist und weil [mm] $2\,$ [/mm] die höchste Potenz $q [mm] \in \IN_0\,$ [/mm] ist, so dass [mm] $7^q$ [/mm] ein Teiler von $392$ ist, entsteht das obige zweidimensionale "Gitter" (beachte auch: Du hast nur 2 Primfaktoren) quasi als [mm] $(p+1)\times [/mm] (q+1)=(3+1) [mm] \times [/mm] (2+1)=4 [mm] \times [/mm] 3$-Matrix.

Beste Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fachdidaktik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de