www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Teilfolgen
Teilfolgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilfolgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 Mo 14.11.2005
Autor: Willi

Hey Leute, ich hab ein riesiges problem mit folgender aufgabe und brauche dringend bis heute abend hilfe.

Also, ich habe zwei teilfolgen gegeben, die beide gegen a konvergieren. Die eine lautet (a2n+100), die andere (a2n+451). Ich soll beweisen, dass an auch gegen a konvergiert. Mir ist klar, dass die erste folge alle geraden zahlen ab 100 beschreibt, die zweite alle ungeraden ab 451. Meine Idee war die Vereinigung der Teilfolgen zu bilden, sodass ich eine folge (an+451) erhalte, die alle zahlen (gerade und ungerade) ab 451 beschreibt.  
Aber wieso konvergiert diese neue folge dann ebenfalls gegen a? Mir fehlt der Beweis. Bitte dringend um hilfe. DANKE.

Ich hab die Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Teilfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Mo 14.11.2005
Autor: angela.h.b.

Hallo,

nimm doch in Zukunft bitte den Formeleditor, man kann alles viel besser verstehen, wenn's schön aufgeschrieben ist.

Zunächst einmal hast Du eine Folge [mm] (a_n), [/mm] über die Du etwas herausfinden sollst.

> Also, ich habe zwei teilfolgen gegeben, die beide gegen a
> konvergieren.

Diese Folge hat zwei Teilfolgen, die gegen denselben Wert a konvergieren. Gut. Würden die Teilfolgen gegen verschiedene Werte konvergieren, konnte die Folge nicht konvergent sein, so ist aber alles noch im Lot.

>Die eine lautet (a2n+100), die andere

> (a2n+451). Ich soll beweisen, dass an auch gegen a
> konvergiert. Mir ist klar, dass die erste folge alle
> geraden zahlen ab 100 beschreibt, die zweite alle ungeraden
> ab 451.

Das stimmt so nicht:
Die erste Folge besteht aus allen geraden Folgengliedern ab 100,
die zweite aus allen ungeraden Folgengliedern ab 451.
Sicher meintest Du das auch.

Meine Idee war die Vereinigung der Teilfolgen zu

> bilden, sodass ich eine folge (an+451) erhalte, die alle
> zahlen (gerade und ungerade) ab 451 beschreibt.  


Hmhmhm, da steckt ja  der richtige Gedanke in Ansätzen drin...

Wir wissen, daß beide Teilfolgen konvergieren gegen a.

Sei [mm] \varepsilon [/mm] > 0.

Dann gibt es ein [mm] N_1 \in \IN [/mm] mit         ...                  (Verarbeite hier die erste Teilfolge und a)

Und es gibt ein [mm] N_2 \in \IN [/mm] mit ...                           (Verarbeite hier die zweite Teilfolge und a)


So. Jetzt definiere N:= max { [mm] 2N_1+100, 2N_2+451 [/mm] } und schau Dir an, was für n [mm] \ge [/mm] N mit

| [mm] a_n [/mm] - a | ist.

Gruß v. Angela,
welche mit dir aber erst wieder kommunizieren wird, wenn sie ein Bemühen um Indizes und Lesbarkeit feststellt. (Da unten bei den Eingabehilfen ist alles so schön erklärt, so daß sogar ich es schließlich verstanden habe, und das will etwas heißen...)




> Aber wieso konvergiert diese neue folge dann ebenfalls
> gegen a? Mir fehlt der Beweis. Bitte dringend um hilfe.
> DANKE.
>  
> Ich hab die Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
        
Bezug
Teilfolgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:00 Mo 14.11.2005
Autor: HOB666

Die Frage wurde auch hier https://matheraum.de/read?i=106273schon mal bearbeitet.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de