www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Teilmengen
Teilmengen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilmengen: Mächtigkeit
Status: (Frage) beantwortet Status 
Datum: 16:32 Fr 12.11.2010
Autor: Yuuichi-san

Aufgabe
a) Zeige, dass n/2 die durchschnittliche Zahl der Elemente einer Teilmenge von {1, . . . , n} ist.

b) Zeige, dass

     [mm] \sum_{k=0}^{n} [/mm] k [mm] {n \choose k} [/mm] = [mm] n2^{n-1} [/mm]

mit Hilfe von (a). (Mit anderen Worten, in der Interpretation von (a) ist diese Gleichung
offensichtlich.)

c) Nutze zum Beweis von (b) die Gleichung

        k [mm] {n \choose k} [/mm] = n [mm] {n-1 \choose k-1}[/mm]

(Diese sollte natürlich vorher bewiesen sein.)

Hi erstmal,
hab mich an die Aufgabe ran gesetzt und und kam für a auf folgende Lsg.

a) M sei eine Menge mit n Elementen, P(M) die Potenzmenge von M
Habe als erstes eine bijektive Abbildung gebildet
f : P(M) [mm] \rightarrow [/mm] P(M)
         A [mm] \rightarrow M\setminus [/mm] A
So das die bijektiv ist ist schnell zu zeigen.
Dann hab ich mir gedacht ich bilde alle Paare  (A ; f(A)), die Vereinigung der Paare haben ja immer die Mächtigkeit n.
Von diesem Paare gibt es [mm] 2^n [/mm] , jedoch reicht es die Hälfte der Paare zu betrachten, da zu jeden (A ; f(A)) ex. (B ; f(B)) mit B = f(A) und f(B)= A, und ich ja jede Teilmenge aus M nur einmal betrachten will.
Also habe ich [mm] 2^{n-1} [/mm] Paare mit n Elementen.
So da die Potenzmenge aber [mm] 2^n [/mm] Elemente hat
Rechne ich [mm] \frac{2^{n-1} * n}{2^n} [/mm] = [mm] \frac{n}{2} [/mm]

Sollte man doch so machen können oder?

Das Prob was jetzt auftritt ist wie kann ich daraus die Formel für b) herleiten?

c) sollte kein Problem sein

Mfg Yuu

Ich habe diese Frage in keinem Anderem Forum gestellt!


        
Bezug
Teilmengen: als Erwartungswert interpret.
Status: (Antwort) fertig Status 
Datum: 21:53 Fr 12.11.2010
Autor: moudi


> a) Zeige, dass n/2 die durchschnittliche Zahl der Elemente
> einer Teilmenge von {1, . . . , n} ist.
>  
> b) Zeige, dass
>  
> [mm]\sum_{k=0}^{n}[/mm] k [mm]{n \choose k}[/mm] = [mm]n2^{n-1}[/mm]
>  
> mit Hilfe von (a). (Mit anderen Worten, in der
> Interpretation von (a) ist diese Gleichung
>  offensichtlich.)
>  
> c) Nutze zum Beweis von (b) die Gleichung
>  
> k [mm]{n \choose k}[/mm] = n [mm]{n-1 \choose k-1}[/mm]
>  
> (Diese sollte natürlich vorher bewiesen sein.)
>  Hi erstmal,
>  hab mich an die Aufgabe ran gesetzt und und kam für a auf
> folgende Lsg.
>  
> a) M sei eine Menge mit n Elementen, P(M) die Potenzmenge
> von M
>  Habe als erstes eine bijektive Abbildung gebildet
>  f : P(M) [mm]\rightarrow[/mm] P(M)
>           A [mm]\rightarrow M\setminus[/mm] A
> So das die bijektiv ist ist schnell zu zeigen.
>  Dann hab ich mir gedacht ich bilde alle Paare  (A ; f(A)),
> die Vereinigung der Paare haben ja immer die Mächtigkeit
> n.
> Von diesem Paare gibt es [mm]2^n[/mm] , jedoch reicht es die Hälfte
> der Paare zu betrachten, da zu jeden (A ; f(A)) ex. (B ;
> f(B)) mit B = f(A) und f(B)= A, und ich ja jede Teilmenge
> aus M nur einmal betrachten will.
>  Also habe ich [mm]2^{n-1}[/mm] Paare mit n Elementen.
>  So da die Potenzmenge aber [mm]2^n[/mm] Elemente hat
>  Rechne ich [mm]\frac{2^{n-1} * n}{2^n}[/mm] = [mm]\frac{n}{2}[/mm]
>  
> Sollte man doch so machen können oder?

Ja ich verstehe das Argument.

>  
> Das Prob was jetzt auftritt ist wie kann ich daraus die
> Formel für b) herleiten?

Die Idee ist folgender Zufallsversuch: [mm] $\Omega$ [/mm] ist die Menge aller Teilmengen von {1,2,...,n}. Jede Teilmenge werde mit der gleichen Wahrscheinlich gezogen (also [mm] $2^{-n}$). [/mm] Sei X die Zufallsvariable, die jeder gezogenen Teilmenge die Elementenzahl zu ordnet, also $X(A)=|A|$.
Was ist jetzt der Erwartungswert E(X) von $X$? (Antwort: Die durchschnittliche Elementenzahl einer zufaellig gezogenen Menge.)
Was ist die Wahrscheinlichkeitsverteilung von $X$? (Dazu muss man fuer jeden moeglichen Wert k von X die Wahrscheinlichkeit berechnen, dass X=k ist: P(X=k).)
Der Erwartungswert ist dann [mm] $E(X)=\sum_{k}k\cdot [/mm] P(X=k)$.)
Eineseits weiss man, was E(X) ist (Antwort A), andrerseit kann man die Wahrscheinlichkeiten P(X=k) leicht angeben. Die Formel fuer den Erwartungswert (noch leicht umgestell) ist dann die Formel b).

>  
> c) sollte kein Problem sein
>  
> Mfg Yuu
>  
> Ich habe diese Frage in keinem Anderem Forum gestellt!
>  

mfG Moudi


Bezug
                
Bezug
Teilmengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Sa 13.11.2010
Autor: Yuuichi-san

Hey,
danke für die Antwort.
Jetzt ist mir klar wie ich es machen soll
mfg Yuu


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de