www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Teilmengen von Abbildungen
Teilmengen von Abbildungen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilmengen von Abbildungen: Starthilfe
Status: (Frage) beantwortet Status 
Datum: 14:54 Do 01.11.2012
Autor: Studi_AC

Aufgabe
Finden Sie jeweils zu der unten gegebenen Abbildung f: [mm]M \to N[/mm] nicht-leere Teilmengen [mm]M_1 \subseteq M und N_1 \subseteq N[/mm] , sodass die Einschränkung [mm]\tilde f[/mm] : [mm]M_1 \to N_1[/mm], [mm]x \mapsto f(x)[/mm] eine Abbildung definiert. Geben Sie auch [mm]\tilde f^-1 : N_1 \to M_1[/mm] explizit an.
aufg. a) f: [mm]\IR \to \IR , x \mapsto x^2-2x+2[/mm]

Hallo zusammen!
ja, wie sieht eigentlich meine Frage aus? Also ich hab die ersten 3 Wochen vom 1.Semester verpasst, steige grade ins Mathestudium ein und weiß überhaupt nicht was ich mit dieser Aufgabe machen soll. Wie gehe ich heran? Was soll ich tuen? Ich hoffe die Frage ist nicht zu allgemein.
Ich suche hier nicht nach Musterlösungen!! Sondern nach einem Ansatz bzw einer Einstiegshilfe :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Teilmengen von Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 Do 01.11.2012
Autor: fred97


> Finden Sie jeweils zu der unten gegebenen Abbildung f: [mm]M \to N[/mm]
> nicht-leere Teilmengen [mm]M_1 \subseteq M und N_1 \subseteq N[/mm]
> , sodass die Einschränkung [mm]\tilde f[/mm] : [mm]M_1 \to N_1[/mm], [mm]x \mapsto f(x)[/mm]
> eine Abbildung definiert.


Kann es sein, dass da stehen sollte: " .....eine bijektive Abbildung definiert " ?


> Geben Sie auch [mm]\tilde f^-1 : N_1 \to M_1[/mm]
> explizit an.
>  aufg. a) f: [mm]\IR \to \IR , x \mapsto x^2-2x+2[/mm]
>  Hallo
> zusammen!
> ja, wie sieht eigentlich meine Frage aus? Also ich hab die
> ersten 3 Wochen vom 1.Semester verpasst, steige grade ins
> Mathestudium ein und weiß überhaupt nicht was ich mit
> dieser Aufgabe machen soll. Wie gehe ich heran? Was soll
> ich tuen? Ich hoffe die Frage ist nicht zu allgemein.
>  Ich suche hier nicht nach Musterlösungen!! Sondern nach
> einem Ansatz bzw einer Einstiegshilfe :)


Sei [mm] f(x)=x^2-2x+2. [/mm] Bestimme den Scheitelpunkt [mm] (x_s|f(x_s) [/mm] der Parabel und male Dir ein Bild !

Dann zeige, dass [mm] M_1:=\{x \in \IR: x \ge x_s \} [/mm] und [mm] N_1:=\{y \in \IR: y \ge f(x_s)\} [/mm] das Gewünschte leisten.

FRED

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>  


Bezug
                
Bezug
Teilmengen von Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:12 Do 01.11.2012
Autor: Studi_AC

Danke, das ging ja schnell mit einer ersten Antwort!

Ja, es folgt eigentlich noch ein Nebensatz " ...eine Abbildung definiert, welche bijektiv ist"!



Bezug
                        
Bezug
Teilmengen von Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Do 01.11.2012
Autor: Studi_AC

Ich frage mich, wie meine Antwort aussehen soll.

Ich weiß wie die Parabel aussieht, der Scheitelpunkt ist bei (1 / 1). Du sagst ich soll zeigen, dass die Teilmenge M1 aus allen x-werten,  die größer 1 sind besteht und damit alle y-werte auch größer 1 sind. Ja, das kann ich anhand meiner Skizze sehen, aber was jetzt?

Bezug
                                
Bezug
Teilmengen von Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:16 Fr 02.11.2012
Autor: leduart

Hallo
du stellst fest, dass in deinem angegebenen Gebiet f streng monoton ist, daraus zeigst du, dass es bijektiv ist, indem du die Definition von bijektiv verwendest, oder ihr habt schon gezeigt, dass streng monotone fkt bijektiv sind, dann kannst du das zitieren.
gruss leduart

Bezug
                                        
Bezug
Teilmengen von Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:00 Fr 02.11.2012
Autor: tobit09

Hallo leduart,

> oder ihr habt schon gezeigt, dass streng monotone fkt bijektiv sind,

Hier soll es sicherlich injektiv statt bijektiv heißen.

Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de