www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Teilraum
Teilraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilraum: Definition
Status: (Frage) beantwortet Status 
Datum: 00:12 Sa 10.03.2018
Autor: sancho1980

Aufgabe
Geben Sie die Gleichung der Ebene durch den Punkt = (1,4,3) an, die durch die Vektoren a = (1,-1,0) und b = (1,4,0) aufgespannt wird. Liegt insbesondere der Punkt Q = (2,6,1) in der Ebene? Stellt diese Ebene einen Teilraum dar?

Hallo,

ich habe die Lösung für diese Aufgabe, verstehe Sie aber nicht. Genauer das, wo es um die Beantwortung der letzten Frage geht:

"Die Ebene bildet keinen Teilraum, da sie nicht durch den Ursprung geht."

Warum muss denn die Ebene durch den Ursprung gehen? Das Kriterium für einen Teilraum ist doch Abgeschlossenheit bzgl. Addition und Multiplikation, also

a, b [mm] \in \IR, [/mm] x, y [mm] \in [/mm] U => ax + by [mm] \in [/mm] U

Was hat das Ganze jetzt mit der Ebene und dem Punkt zu tun? Warum sollte der Nullvektor nicht Teil der linearen Hülle von x und y sein? Was hat der Nullvektor denn mit dem Koordinatenursprung zu tun?

LG

        
Bezug
Teilraum: Antwort
Status: (Antwort) fertig Status 
Datum: 04:42 Sa 10.03.2018
Autor: fred97


1. ein Teilraum eines Vektorraumes enthält den Nullvektor

2. eine Teilmenge E des [mm] \IR^n [/mm] geht durch den Ursprung [mm] \gdw [/mm] 0  [mm] \in [/mm] E





Bezug
                
Bezug
Teilraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:12 Sa 10.03.2018
Autor: sancho1980


> 2. eine Teilmenge E des [mm]\IR^n[/mm] geht durch den Ursprung [mm]\gdw[/mm]
> 0  [mm]\in[/mm] E

Eben das ist mein Verständnisproblem. Nach meinem Verständnis ist ein Vektorraum doch einfach eine Menge von Vectoren, für die gilt, das jede Linearkombination selbiger auch wieder Teil der Menge ist. Wo kommt da der Ursprung ins Spiel? Einen Vektor kann ich doch zu jedem beliebigen Punkt im Koordinatensystem aufaddieren. Was hat der Punkt mit der Menge an Vektoren zu tun? Versteht mich einer?

Bezug
                        
Bezug
Teilraum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Sa 10.03.2018
Autor: fred97


> > 2. eine Teilmenge E des [mm]\IR^n[/mm] geht durch den Ursprung [mm]\gdw[/mm]
> > 0  [mm]\in[/mm] E
>  
> Eben das ist mein Verständnisproblem. Nach meinem
> Verständnis ist ein Vektorraum doch einfach eine Menge von
> Vectoren, für die gilt, das jede Linearkombination
> selbiger auch wieder Teil der Menge ist.

der Nullvektor ist auch eine Linearkombination


Wo kommt da der

> Ursprung ins Spiel? Einen Vektor kann ich doch zu jedem
> beliebigen Punkt im Koordinatensystem aufaddieren. Was hat
> der Punkt mit der Menge an Vektoren zu tun? Versteht mich
> einer?

ja und nein.

Schau dir nochmal  die definitionen von Vektorraum und Untervektorraum an.

Eine Ebene im [mm] \IR^3 [/mm] ist zunächst nur eine Teilmenge des [mm] \IR^3. [/mm] Sie ist genau  dann ein Untervektorraum,  wenn sie den Nullvektor  enthält.  Bildlich  bedeutet  dies,  dass die  Ebene  durch den Koordinatenursprung geht


Bezug
                        
Bezug
Teilraum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Sa 10.03.2018
Autor: Gonozal_IX

Hiho,

> Eben das ist mein Verständnisproblem. Nach meinem
> Verständnis ist ein Vektorraum doch einfach eine Menge von
> Vectoren, für die gilt, das jede Linearkombination
> selbiger auch wieder Teil der Menge ist. Wo kommt da der
> Ursprung ins Spiel? Einen Vektor kann ich doch zu jedem
> beliebigen Punkt im Koordinatensystem aufaddieren. Was hat
> der Punkt mit der Menge an Vektoren zu tun? Versteht mich
> einer?

deine Verwirrung ist verständlich und kommt davon, dass in der Schulmathematik oft einfach "[]Vektorraum" gesagt wird, wenn eigentlich "[]affiner Raum" gemeint ist. Manche sagen auch "affiner Punktvektorraum".

Wenn ich dich richtig verstehe, stellst du dir einfach alle Vektoren vor, die man an die Punkte der Ebene "anlegen" kann, die dann selbst wieder in der Ebene liegen… dieses "an Punkte anlegen" existiert aber im Standardvektorraum [mm] $\IR^n$ [/mm] gar nicht.

Der Unterschied ist: Im affinen Raum, nennen wir ihn A, benötigt man Punkt und Vektor, wenn man etwas angeben möchte. D.h. A ist ein Tupel aus einer Menge von  PUNKTEN und einer Menge von VEKTOREN. Also das, was du dir vorstellst. Und für affine Unterräume $U [mm] \subseteq [/mm] A$ kann es durchaus passieren, dass der UrsprungsPUNKT nicht im Unterraum liegt. ABER: Der NULLVEKTOR muss auch hier in U liegen.

Nun zu deiner Aufgabe: Wir haben gar keinen affinen Raum gegeben, sondern einen "einfachen" Vektorraum, d.h. dein "Wir hängen einen Vektor an einen beliebigen Punkt" geht hier nicht, ist nicht vorgesehen, passiert auch nicht, da es schlichtweg keine "PUNKTE" gibt.
Sondern: Wenn du einen Vektor visualisieren willst, passiert das anschaulich nur so, dass du einen Pfeil immer beim Ursprung "anlegst" und die Pfeilspitze ist das "Ziel". Nun hast du bereits geschrieben:

> Nach meinem
> Verständnis ist ein Vektorraum doch einfach eine Menge von
> Vectoren, für die gilt, das jede Linearkombination
> selbiger auch wieder Teil der Menge ist.

Und man sieht sehr leicht, dass für einen beliebigen Vektor $r [mm] \in \IR^n$ [/mm] in einem Untervektorraum U eben auch die Linearkombination $r - r  = 0 [mm] \in [/mm] U$ liegen muss. Und visualisieren wir uns nun den Vektor $0 [mm] \in [/mm] U$ wie oben beschrieben, so landen wir eben beim Ursprung.

Zusammengefasst: Die Annahme es gäbe PUNKTE in einem Vektorraum ist falsch, PUNKTE gibt es nur in affinen Räumen. Und ohne Punkte ist deine Vorstellung falsch, in Vektorräumen gibt es nur einen Ursprung.

Gruß,
Gono




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 3h 40m 7. fred97
DiffGlGew/Anfangswertaufgabe lösen
Status vor 4h 21m 3. Dom_89
DiffGlGew/Lösung der DGL bestimmen
Status vor 4h 24m 6. HJKweseleit
DiffGlGew/Anfangswertaufgabe lösen
Status vor 5h 50m 5. Nico_L.
S8-10/Bruchgleichung lösen
Status vor 10h 30m 16. Siebenstein
UElek/Leitungsumrechnung
^ Seitenanfang ^
www.vorhilfe.de