www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Teilraum
Teilraum < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:34 Sa 04.12.2010
Autor: Lentio

Aufgabe
1) Ist  die Menge D der antisymmetrischen reellen 2 × 2-Matrizen ein Teilraum des
Vektorraums [mm] R^{2,2}. [/mm] Gib die Basis an un bestimme die Dimension dieses Teilraumes.
2) Ist  die Menge M := {A [mm] \in C^{3,3} [/mm] |AA* = [mm] I^3} [/mm] ein Teilraum des Vektorraums [mm] C^{3,3} [/mm]
(wobei A* die adjungierte Matrix von A bezeichnet). Falls ja, dann gib eine Basis
(mit Begründung) an und bestimme die Dimension dieses Teilraums.

Hallo hallo!

Sitze einmal mehr bei einer Aufgabe fest und hoffe auf Hilfe.

Was ich bieher habe zu 1)

Ist Teilraum, denn:

nicht leer, z.B. [mm] \pmat{ 0 & 2 \\ -2 & 0 } [/mm] enthalten

abgeschl- bzl Addition:

Seien [mm] A,B\in [/mm] D, d.h. b=-c und f=-g.
[mm] A+B=\pmat{ 0 +0& -c-g\\ c+g & 0 +0}= \pmat{ 0 & -c-g \\ c+g & 0 } \Rightarrow [/mm] Summe beider Matrizen [mm] \in [/mm] Menge der antisymmetrischen reellen 2 × 2-Matrizen.

abgeschl- bzl Multiplikation:
Sei A [mm] \in [/mm] Menge der antisymmetrischen reellen 2 × 2-Matrizen, [mm] \alpha \in [/mm] R.
[mm] \alpha*A=\pmat{\alpha*0 & \alpha*-c \\ \alpha*c & \alpha*0 }= \pmat{0 & \alpha*-c \\ \alpha*c & 0 }\Rightarrow [/mm] Multiplikation erfüllt Bedingung, [mm] \alpha*A \in [/mm] Menge der antisymmetrischen reellen 2 × 2-Matrizen

Kann man da  mehr sagen? Die Argumentation kommt mir ein wenig fadenscheinig vor.

Basis [mm] \pmat{ 0 & -1 \\ 1& 0 }. [/mm]
Nachweis Erzeugendensystem:
[mm] \alpha*\pmat{ 0 & -1 \\ 1 & 0 }=\pmat{ 0 & b \\ -b & 0 } [/mm] Komponentenvergleich führt zu [mm] \alpha=-b, [/mm] eindeutige Lösung
jede Matrix in D besitzt die Form [mm] \pmat{ 0 & b \\ -b & 0 }/\pmat{ 0 & -b \\ b & 0 }, [/mm] die als Linearkombination der Matrix [mm] \pmat{ 0 & -1 \\ 1 & 0 } [/mm] dargestellt werden können.

Nullmatrix nur durch die triviale Lösung [mm] \alpha=0 [/mm] darstellbar, also linear unabhängig [mm] \Rightarrow [/mm] Dimension 1.

Bin mit dem Ergebnis aber nicht wirklich zufrieden....

zu 2) Hab leider keinen  Ansatz. Es geht wohl um die Menge der regulären Matrizen in [mm] C^{3,3}, [/mm] da A*=A^-1 . Wie zeig ich da das Erfüllen der Teilraumkriterien bzw. das Aufstellen einer Basis?


mfg

        
Bezug
Teilraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Sa 04.12.2010
Autor: Lentio

Hab es jetzt zu 2) so versucht:

kein Teilraum, da nicht abgeschlossen bzgl. Addition:

Seien [mm] A_1, A_2 \in [/mm] M mit der Eigenschaft A*B=I, wobei [mm] B=\overline{A^T}=A^{-1} [/mm]
[mm] \Rightarrow (A_1+A_2)B=I [/mm]
[mm] \gdw A_1*B+A_2*B=I \gdw [/mm] I +I = I [mm] \Leftarrow [/mm] Aussage unwahr
Ich finde aber kein konkretes Beispiel. Das lässt mich dann doch an der  Richtigkeit meines BEweises zweifeln.

Bezug
                
Bezug
Teilraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Di 07.12.2010
Autor: fred97

Ist die Nullmatrix in M ????

FRED

Bezug
        
Bezug
Teilraum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Di 07.12.2010
Autor: angela.h.b.


> Bin mit dem Ergebnis aber nicht wirklich zufrieden....
>  

Hallo,

ich bin zufrieden.

Gruß v. Angela



Bezug
                
Bezug
Teilraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:29 Di 07.12.2010
Autor: Lentio

Danke für das Feedback !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de