www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Tensorprodukt
Tensorprodukt < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tensorprodukt: Ansatz
Status: (Frage) überfällig Status 
Datum: 11:59 Mo 26.07.2010
Autor: schneckennudel91

Aufgabe
Sei K ein Körper und n und m natürliche Zahlen. Zeigen Sie, dass es einen eindeutigen Homomorphismus [mm] \nu [/mm] : [mm] K^n \otimes K^m \to M_{nxm}(K) [/mm]  : x [mm] \otimes [/mm] y [mm] \mapsto xy^t [/mm] gibt.
Zeigen Sie, dass [mm] \nu [/mm] ein Isomorphismus ist.

Ich komme irgendwie nicht auf den richtigen Ansatz.
Vor allem beschäftigt mich die Frage, wie ich die Existenz dieses Homomorphismus zeigen soll.
Was muss ich zur Eindeutigkeit zeigen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


edit: Wir haben das Tensorprodukt über die Universelle Eigenschaft definiert, aber ich weiß nicht, wie ich die Existenz zeigen soll. Denn dazu sagt mir die universelle Eigenschaft ja gar nichts.

        
Bezug
Tensorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 Mo 26.07.2010
Autor: statler

Mahlzeit!

> Sei K ein Körper und n und m natürliche Zahlen. Zeigen
> Sie, dass es einen eindeutigen Homomorphismus [mm]\nu[/mm] : [mm]K^n \otimes K^m \to M_{nxm}(K)[/mm]
>  : x [mm]\otimes[/mm] y [mm]\mapsto xy^t[/mm] gibt.
> Zeigen Sie, dass [mm]\nu[/mm] ein Isomorphismus ist.
>  Ich komme irgendwie nicht auf den richtigen Ansatz.
> Vor allem beschäftigt mich die Frage, wie ich die Existenz
> dieses Homomorphimus zeigen soll.
> Was muss ich zur Eindeutigkeit zeigen?

Wenn ihr das Tensor-Produkt über seine universelle Eigenschaft definiert habt, ist das auch genau der richtige Ansatz.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Tensorprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:54 Mo 26.07.2010
Autor: felixf

Moin zusammen,

> Mahlzeit!
>  
> > Sei K ein Körper und n und m natürliche Zahlen. Zeigen
> > Sie, dass es einen eindeutigen Homomorphismus [mm]\nu[/mm] : [mm]K^n \otimes K^m \to M_{nxm}(K)[/mm]
> >  : x [mm]\otimes[/mm] y [mm]\mapsto xy^t[/mm] gibt.

> > Zeigen Sie, dass [mm]\nu[/mm] ein Isomorphismus ist.
>  >  Ich komme irgendwie nicht auf den richtigen Ansatz.
> > Vor allem beschäftigt mich die Frage, wie ich die Existenz
> > dieses Homomorphimus zeigen soll.
> > Was muss ich zur Eindeutigkeit zeigen?
>  
> Wenn ihr das Tensor-Produkt über seine universelle
> Eigenschaft definiert habt, ist das auch genau der richtige
> Ansatz.

genau. Auch der erste Teil der Aufgabe -- die Existenz -- haengt stark davon ab, wie das Tensorprodukt definiert wurde und ob die universelle Eigenschaft bekannt ist.

Liebe(r) schneckennudel91, du musst uns also etwas mehr erzaehlen, bevor wir dir helfen koennen :)

LG Felix



Bezug
        
Bezug
Tensorprodukt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 02.08.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de