www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Termumformung
Termumformung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Termumformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Mi 20.10.2010
Autor: bla234

Aufgabe
[mm] f(x)=1-(\bruch{2k}{e^x+k}) [/mm]
Zeigen Sie, dass die Funktion [mm] F(x)=2\*ln(e^x+k)-x [/mm] eine Stammfunktion von f(x) ist.

Ich habe F(x) abgeleitet und dabei kommt folgendes raus:
[mm] F'(x)=\bruch{e^x-k}{e^x+k} [/mm]

Schön und gut, wenn ich f(x) umforme komme ich zum gleichen Ergebniss wie ich ich in der Ableitung von F(x) gekommen bin:

[mm] f(x)=\bruch{e^x+k}{e^x+k}-\bruch{2k}{e^x+k} [/mm]
[mm] f(x)=\bruch{e^x-k}{e^x+k} [/mm]

Aber wie kann ich F'(x) so umwandeln das f(x) in der ursprünglichen Form rauskommt?


        
Bezug
Termumformung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Mi 20.10.2010
Autor: schachuzipus

Hallo bla234,


> [mm]f(x)=1-(\bruch{2k}{e^x+k})[/mm]
>  Zeigen Sie, dass die Funktion [mm]F(x)=2\*ln(e^x+k)-x[/mm] eine
> Stammfunktion von f(x) ist.
>  Ich habe F(x) abgeleitet und dabei kommt folgendes raus:
>  [mm]F'(x)=\bruch{e^x-k}{e^x+k}[/mm]  [ok]
>
> Schön und gut, wenn ich f(x) umforme komme ich zum
> gleichen Ergebniss wie ich ich in der Ableitung von F(x)
> gekommen bin:
>  
> [mm]f(x)=\bruch{e^x+k}{e^x+k}-\bruch{2k}{e^x+k}[/mm]
>  [mm]f(x)=\bruch{e^x-k}{e^x+k}[/mm]
>
> Aber wie kann ich F'(x) so umwandeln das f(x) in der
> ursprünglichen Form rauskommt?

Addiere in [mm]F'(x)[/mm] eine "nahrhafte Null" im Zähler:

[mm]F'(x)=\frac{e^x-k}{e^x+k}=\frac{e^x-k\red{+2k-2k}}{e^x+k}=\frac{\left(e^x+k\right)-2k}{e^x+k}[/mm]

Klappt's nun?

Gruß

schachuzipus


Bezug
        
Bezug
Termumformung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Mi 20.10.2010
Autor: zumwinkel

Ich weiß nicht, ob es vielleicht noch eleganter geht, aber die binomischen Formeln helfen hier weiter:


[mm] {F}'\left( x \right)=\frac{{{e}^{x}}-k}{{{e}^{x}}+k}=\frac{\left( {{e}^{x}}-k \right)\left( {{e}^{x}}+k \right)}{{{\left( {{e}^{x}}+k \right)}^{2}}}=\frac{{{e}^{2x}}-{{k}^{2}}}{{{\left( {{e}^{x}}+k \right)}^{2}}}= \\ [/mm]
[mm] \frac{{{e}^{2x}}+2{{e}^{x}}k+{{k}^{2}}-2{{e}^{x}}k-2{{k}^{2}}}{{{\left( {{e}^{x}}+k \right)}^{2}}}=\frac{{{\left( {{e}^{x}}+k \right)}^{2}}-2{{e}^{x}}k-2{{k}^{2}}}{{{\left( {{e}^{x}}+k \right)}^{2}}}= \\ [/mm]
[mm] 1-\frac{2{{e}^{x}}k+2{{k}^{2}}}{{{\left( {{e}^{x}}+k \right)}^{2}}}=1-\frac{2k\left( {{e}^{x}}+k \right)}{{{\left( {{e}^{x}}+k \right)}^{2}}}=1-\frac{2k}{{{e}^{x}}+k}=f\left( x \right) \\ [/mm]




Bezug
                
Bezug
Termumformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Mi 20.10.2010
Autor: bla234

Vielen Dank die erste Antwort war schnell und super.

Die Antwort von zumwinkel verstehe ich bei Umformung Nr. 4 nicht:
[mm] \frac{{{e}^{2x}}-{{k}^{2}}}{{{\left( {{e}^{x}}+k \right)}^{2}}} [/mm]
[mm] =\frac{{{e}^{2x}}+2{{e}^{x}}k+{{k}^{2}}-2{{e}^{x}}k-2{{k}^{2}}}{{{\left( {{e}^{x}}+k \right)}^{2}}} [/mm]

Woher bekommst du den Zähler?

Bezug
                        
Bezug
Termumformung: nahrhafte Null
Status: (Antwort) fertig Status 
Datum: 18:00 Mi 20.10.2010
Autor: Loddar

Hallo bla!


Hier wurde ebenfalls wie bei der anderen Lösung eine "nahrhafte Null" addiert.


Gruß
Loddar



Bezug
                                
Bezug
Termumformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Mi 20.10.2010
Autor: reverend

Hallo,

um das mal zu sagen: die Umformung von schachuzipus ist doch um Klassen einfacher. Gewöhnliche Bruchrechnung...

Du könntest stattdessen auch die 1 mit in den Bruch nehmen, und sie dazu also ersetzen durch [mm] \bruch{e^x+k}{e^x+k}. [/mm]

Genauso ist er doch auf die "nahrhafte Null" gekommen.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de