www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Tipp
Tipp < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tipp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:57 So 19.02.2012
Autor: Coup

Aufgabe
Bestimmen Sie den Rang von A, untersuchen Sie das lineare Gleichungssystem Ax = b auf Lösbarkeit und bestimmen Sie eine Parameterdarstellung seiner Lösungsmenge falls Lösbar.

A = [mm] \pmat{ 2 & 1 & 5 & 3 & -2 \\ 1 & 3 & 0 & -1 & -1 \\ 1 & 2 & 1 & 0 & -1 } [/mm]
b = [mm] \pmat{ -1 \\ 2 \\ 1 } [/mm]

Hi,
Der Rang von A ist ja nun 2, denn nachm Gauß
[mm] \pmat{ 1 & 0 & 3 & 2 & -1 \\ 0 & 1 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 } [/mm]
Der Rang von A|b ist auch 2 , denn Gauß sagt
[mm] \pmat{ 1 & 0 & 3 & 2 & -1& -1 \\ 0 & 1 & -1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0&0 } [/mm]

Demnach ist rg(A) = rg(A|b) und das lgs sollte mindestens eine Lösung haben.
Wie schreibe ich nun die Lösungsmenge auf ?
lg
Flo

        
Bezug
Tipp: Antwort
Status: (Antwort) fertig Status 
Datum: 06:57 So 19.02.2012
Autor: angela.h.b.


> Bestimmen Sie den Rang von A, untersuchen Sie das lineare
> Gleichungssystem Ax = b auf Lösbarkeit und bestimmen Sie
> eine Parameterdarstellung seiner Lösungsmenge falls
> Lösbar.
>  
> A = [mm]\pmat{ 2 & 1 & 5 & 3 & -2 \\ 1 & 3 & 0 & -1 & -1 \\ 1 & 2 & 1 & 0 & -1 }[/mm]
>  
> b = [mm]\pmat{ -1 \\ 2 \\ 1 }[/mm]
>  Hi,
>  Der Rang von A ist ja nun 2, denn nachm Gauß
>   [mm]\pmat{ 1 & 0 & 3 & 2 & -1 \\ 0 & 1 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 }[/mm]
>  
> Der Rang von A|b ist auch 2 , denn Gauß sagt
>   [mm]\pmat{\red{ 1} & 0 & 3 & 2 & -1&|& -1 \\ 0 & \red{1 }& -1 & -1 & -1 &|& 1 \\ 0 & 0 & 0 & 0 & 0&|&0 }[/mm]
>  
> Demnach ist rg(A) = rg(A|b) und das lgs sollte mindestens
> eine Lösung haben.
>  Wie schreibe ich nun die Lösungsmenge auf ?

Hallo,

Deine ZSF habe ich nicht geprüft.

Die führenden Elemente der Nichtnullzeilen stehen in Spalte 1 und 2, und Du kannst daher die 3., 4. und 5. Variable frei wählen.

Mit
[mm] x_3:=r [/mm]
[mm] x_4:=s [/mm]
[mm] x_5=t [/mm]
bekommst Du aus Zeile 2
[mm] x_2=1+r+s+t, [/mm]
aus Zeile 1
[mm] x_1=-1-3r-2s+t. [/mm]

Damit weißt Du, daß alle Lösungen x die Gestalt haben

[mm] \vektor{x_1\\x_2\\x_3\\x_4\\x_5}=\vektor{-1-3r-2s+t\\1+r+s+t\\r\\s\\t}=\vektor{-1\\1\\0\\0\\0}+r\vektor{-3\\1\\1\\0\\0}+s\vektor{-2\\1\\0\\1\\0}+t\vektor{1\\1\\0\\0\\1}, r,s,t\in \IR. [/mm]

Als Menge kannst Du schreiben

[mm] L(A,b)=\vektor{-1\\1\\0\\0\\0}+\green{<\vektor{-3\\1\\1\\0\\0},\vektor{-2\\1\\0\\1\\0},\vektor{1\\1\\0\\0\\1}>}. [/mm]

Der erste Vektor ist eine spezielle Lösung des inhomogenen LGS,
das Grüne ist der Lösungsraum des zugehörigen homogenen Systems, der Kern von A.
Die spitzen Klammern bedeuten hier Erzeugnis/Span/lineare Hülle, möglicherweise habt Ihr eine andere Schreibweise dafür.
In den spitzen Klammern steht eine Basis des Kerns/Lösungsraumes des homogenen Systems.

Da Du die Matrix bereits in reduzierter ZSF hast, möchte ich Dir noch einen Schimpansenmathematikweg zur Lösungsmenge, den "-1-Trick" zeigen.

1. In die red.ZSF Nullzeilen so einschieben, daß die Koeffizientenmatrix  quadratisch wird und die führenden Elemente der Nichtnullzeilen auf der Diagonalen stehen. (Hier: auf der Diagonalen stehenbleiben:

[mm]\pmat{\red{ 1} & 0 & 3 & 2 & -1&|& -1 \\ 0 & \red{1 }& -1 & -1 & -1 &|& 1 \\ 0 & 0 & 0 & 0 & 0&|&0 \\ 0 & 0 & 0 & 0 & 0&|&0\\ 0 & 0 & 0 & 0 & 0&|&0}[/mm]

2. Von der Koeffizientenmatrix die Einheitsmatrix subtrahieren:

[mm]\pmat{0 & 0 & 3 & 2 & -1&|& -1 \\ 0 & 0& -1 & -1 & -1 &|& 1 \\ 0 & 0 & \green{-1} & 0 & 0&|&0 \\ 0 & 0 & 0 & \green{-1} & 0&|&0\\ 0 & 0 & 0 & 0 & \green{-1}&|&0}[/mm]

3. rechts steht eine spezielle Lösung des Systems, und die Spalten mit den frischen Minuseinsen auf der Hauptdiagonalen sind eine Lösung des zugehörigen inhomogenen Systems, so daß man schnell hinschreiben kann

[mm] L(A,b)=\vektor{-1\\1\\0\\0\\0}+<\vektor{3\\-1\\-1\\0\\0},\vektor{2\\-1\\0\\-1\\0},\vektor{-1\\-1\\0\\0\\-1}>. [/mm]

Mit etwas Üung kriegt man das hin, indem man die Matrix nur im Geist erweitert.

Eine kleine Panne stelle ich fest: bei Testen der ermittelten Lösungsmenge am LGS Ax=b zeigt sich, daß diese nicht stimmt.
(spezielle Lsg in Ax einsetzen: b muß rauskommen
Basisvektoren des Kerns einsetzen: 0 muß rauskommen)
Ich nehme stark an, daß Dir beim Weg zur reduzierten ZSF ein Fehler unterlaufen ist.
Prüfe das nochmal, ermittle dann erneut die Lösung und teste, ob sie stimmt.

LG Angela


> lg
>  Flo


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de