www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Tipp
Tipp < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tipp: Straffheit Normalverteilung
Status: (Frage) überfällig Status 
Datum: 15:43 Di 15.01.2013
Autor: dimi727

Aufgabe
Aufgabe (Tightness of a set of normal distributions) :

Prüfe: Eine Familie von Normalverteilungen { [mm] N_{\mu,\sigma^{2}}: (\mu, \sigma^{2}) \in [/mm] L } ist straff in [mm] \IR [/mm] genau dann wenn die Indexmenge L [mm] \subset \IR [/mm] x [mm] (0,\infty) [/mm] beschränkt ist.

Hallo!

Ich weiß nicht genau,wie ich obige Äquivalenz beweisen kann.

Unsere Definition von Staffheit :

(Stra heit). Eine beliebige Familie [mm] (Pi)_{i \in I} [/mm] von Wahrscheinlichkeitsmaßen
auf einem metrischen Raum (E; d) heißt straff , falls zu jedem [mm] \varepsilon [/mm] > 0 eine kompakte Menge K [mm] \subset [/mm] E existiert mit [mm] Pi(K^{c}) [/mm] < [mm] \varepsilon [/mm]   für jedes i [mm] \in [/mm] I.

So ich kann mir zwar vorstellen,wie das gehen soll,aber nicht, wie ich das formal richtig beweisen soll. Was ich verstehe :

=>

Unsere Familie ist straff -> es gibt eine kompakte Menge K  [mm] \subset \IR [/mm] , sodass dieses Intervall K fast alles bis auf einen  [mm] \varepsilon [/mm]  -Bereich dieser Familie von Normalverteilungen abdeckt. D.h. dass unsere [mm] (\mu,\sigma^{2}) [/mm] Mengen einen beschränkten Wertebereich haben,da ansonsten es [mm] \mu [/mm] und [mm] \sigma [/mm] gibt,sodass die Normalglockenabdeckung einen größeren Bereich als  [mm] \varepsilon [/mm]  nicht abdeckt. ALso ist die Indexmenge L von [mm] (\mu,\sigma^{2}) [/mm] durch die Intervallgrenzen von K beschränkt.

<=

Unsere Indexmenge ist beschränkt,also erreicht die größte Masse bis auf einen  [mm] \varepsilon [/mm] Bereich unserer Familie von Normalverteilung nur einen bestimmten Bereich in [mm] \IR [/mm] . Dieser Bereich ist kompakt,da [mm] K^{c} [/mm] offen ist aufgrund der Existenz von   [mm] \varepsilon [/mm] > 0 (halt beliebige  [mm] \varepsilon [/mm] Umgebung in [mm] K^{c},sodass [/mm] dieses eben offen ist).

Nach Definition ist also unsere Familie straff.


Dies soll nur meinen Gedankengang wiedergeben, ob ich auf dem richtigen Weg bin,denn das ist alles mehr als schwammig und formal falsch, vlt. auch schlecht verständlich.

Also bitte ich um ein Feedback und Tipps,wie ich das jetzt,sollte mein GEdankengang richtig sein, formal angehen soll.

Danke schonmal! :)

        
Bezug
Tipp: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 17.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de