www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Top. VR: Kpkt. => Beschr.
Top. VR: Kpkt. => Beschr. < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Top. VR: Kpkt. => Beschr.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:54 Fr 21.04.2006
Autor: vanguard2k

Aufgabe
Sei (X,T) X Menge, T Topologie auf X ein topologischer Vektorraum.
Man nennt eine Menge [mm] B \subseteq X [/mm] beschränkt, wenn es für alle W aus einer Nullumgebungsbasis ein [mm] \lambda_{w}>0 [/mm] gibt, sodass [mm] B \subseteq \lambda_{w} W [/mm].

Zu zeigen:

a) (bereits gelöst) Diese Definition ist nicht von der gewählten Nullumgebungsbasis abhängig.

b) Jede Kompakte Menge ist beschränkt.

Also ich bin denke ich schon recht weit aber mir fehlt noch ein klein bisschen Argumentation.

Mein "Rechengang":

Sei K eine kompakte Teilmenge von X, W ein beliebiges Element der Nullumgebungsbasis, dann gilt:

[mm] K \subseteq \bigcup_{x \in K} (x+W) [/mm]
und aus der Kompaktheit von k folgt, dass endlich viele ausreichen, d.h.:

[mm] K \subseteq \bigcup_{i=1}^{n}(x_{i}+W) [/mm]
wobei die [mm] x_i [/mm] natürlich aus K sind.

Was ich noch verwenden wollte (wir haben es auch bewiesen.)
Jede Nullumgebung ist absorbierend, d.h.
[mm] \forall x \in X \exists \lambda_{x} > 0 : \lambda_{x}x \in W [/mm]

Und hier mein Plan:

Kann ich die Umgebung W mit einem geeigneten Lambda derartig "aufblasen", dass alle meine [mm] x_i [/mm] + W enthalten sind, dann bin ich fertig.

Nun gibt es für jedes solche [mm] x_i [/mm] ein Lambda sodass [mm] x_i [/mm] in W enthalten ist. Aber da  [mm] \exists \lambda > 0 : x_{i}+W \subseteq \lambda W [/mm] entweder gar nicht gilt oder ich zu blöd oder sonstirgedwas bin es zu zeigen bin ich an einem Ende angelangt.
(Für dieses [mm] \lambda [/mm] wäre das Maximum der [mm] \lambda_{i} [/mm] geplant gewesen, das ja existiert, da ich nur endlich viele [mm] \lambda_{i} [/mm] habe.)

Bitte erbarmt euch meiner (wahrsch. auf einer riesigen Leitung stehenden) Seele und helft mir! =)

Mfg

Michael


Ach ja, ich habe die Frage in keinem anderen Forum gestellt


        
Bezug
Top. VR: Kpkt. => Beschr.: Antwort
Status: (Antwort) fertig Status 
Datum: 01:58 Sa 22.04.2006
Autor: topotyp

Das ist gar nicht mal leicht.
0. Es gibt eine Nullumgebungsbasis [mm] $\mathcal{U}$ [/mm] mit Elementen U die
absorbierend, kreisförmig sind und die folgende Eigenschaft haben:
Zu [mm] $U\in\mathcal{U}$ [/mm] gibt es stets [mm] $V\in \mathcal{U}$ [/mm] mit [mm] $V+V\subset [/mm] U$.
1. Jede Punktmenge [mm] \{x\} [/mm] ist beschränkt. Denn zu jedem [mm] $U\in \mathcal{U}$ [/mm]
folgt [mm] $x\in \lambda [/mm] U $ für ein [mm] $\lambda [/mm] > 0$ weil $U$ absorbierend und kreisförmig ist.
2. Eine endliche Punktmenge ist beschränkt. (allg. mit $A, B$ ist auch
$A+B$ beschränkt)
3. Eine kompakte Menge ist beschränkt.
Sei U eine beliebige Nullumgebung aus [mm] $\mathcal{U}$. [/mm]
Nun gibt es wegen (0) stets $V [mm] \in \mathcal{U}$ [/mm] mit [mm] $V+V\subset [/mm] U$.
Also (wie du selbst fands) $K [mm] \subset \bigcup_i x_i [/mm] + V = A +V $
mit [mm] $A:=\{x_1,\ldots,x_n\}$ [/mm] endlich! Nach (2) ist [mm] $A\subset \lambda_0 [/mm] V$
mit einem [mm] $\lambda_0>0$, [/mm] also
$$  K [mm] \subset \lambda_0 [/mm] V+ V [mm] \subset (\lambda_0+1) (V+V)\subset (\lambda_0+1) [/mm] U $$




Bezug
                
Bezug
Top. VR: Kpkt. => Beschr.: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:53 Sa 22.04.2006
Autor: vanguard2k

Echt super! Jetzt hab ichs auch begriffen glaub ich =). Danke für die Bemühungen.

Btw: Ich bin erleichtert dass nicht nur ich es schwer gefunden habe =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de