www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Topologie: Diverse Begriffe
Topologie: Diverse Begriffe < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologie: Diverse Begriffe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:23 Mo 03.03.2014
Autor: Babybel73

Hallo zusammen

Haben gerade begonnen mit den Grundbegriffen der Topologie. Und ich habe da noch so meine Mühe damit...
Folgende Aufgabe sollte ich lösen:

a) Finde je ein Beispiel für eine Teilmenge von [mm] \IR^n, [/mm] die ihren Rand enthält; ihren Rand teilweise, aber nicht ganz enthält; ihren Rand nicht enthält.

b) Es sei (X,d) ein metrischer Raum und A [mm] \subset [/mm] X. Zeige:
i) [mm] \partial A=\partial(A^c)=\partial(A^{\circ})=\partial(\overline{A}) [/mm]

ii) [mm] \overline{A}=A^{\circ} \cup \partial(A) [/mm]  
[mm] (\cup [/mm] sollte noch einen Punkt oben drauf haben, also eine ausschliessende Disjunktion sein)

c) [mm] \partial(AxB)=(\partial(A) [/mm] x [mm] \overline{B}) \cup (\overline{A} [/mm] x [mm] \partial(B)) [/mm]




So nun zu meinem Lösungsvorschlag:

a) Hier habe ich mir überlegt, dass ich doch einfach die folgenden Intervalle nehmen kann:
[0,1]: Teilmenge von [mm] \IR [/mm] mit Rand
[0,1): Teilmenge von [mm] \IR, [/mm] die den Rand nur teilweise enthält
(0,1): Teilmenge von [mm] \IR, [/mm] die den Rand nicht enthält

Kann ich das so machen?


b)
i) Hier gilt ja: x [mm] \in \partial(A) \gdw \forall \varepsilon>0: \exists x_0,x_1 \in B_{\varepsilon}, [/mm] s.d. [mm] x_0 \not\in [/mm] A & [mm] x_1 \in [/mm] A
So nun für [mm] \partial(A^c): [/mm]
x [mm] \in \partial(A^c) \gdw \forall \varepsilon>0: \exists x_0,x_1 \in B_{\varepsilon}, [/mm] s.d. [mm] x_0 \not\in A^c [/mm] & [mm] x_1 \in A^c [/mm]
Nach Definition des Komplements gilt nun:
[mm] \gdw \forall \varepsilon>0: \exists x_0,x_1 \in B_{\varepsilon}, [/mm] s.d. [mm] x_0 \not\in X\A [/mm] & [mm] x_1 \in X\A [/mm]
wobei [mm] x_0 \not\in X\A \gdw x_0 \in [/mm] A & [mm] x_1 \in X\A \gdw x_1 \not\in [/mm] A

Kann ich das so machen? Oder könnte ich es auch anders zeigen?


ii)
Hier habe ich nun einige Schwierigkeiten:
Es gilt nach Definition des Abschlusses:
x [mm] \in \overline{A} \gdw [/mm] x [mm] \in [/mm] A [mm] \cup [/mm] x [mm] \in \partial(A) [/mm]

Wie kann ich nun von dieser Definition aus, zeigen dass die Behauptung gilt?


c) Hier sollte ich einen Tipp von euch haben...??



Vielen Dank für eure Hilfe!




        
Bezug
Topologie: Diverse Begriffe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Mo 03.03.2014
Autor: Babybel73

Kann mir niemand helfen?

Bezug
                
Bezug
Topologie: Diverse Begriffe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:13 Mo 03.03.2014
Autor: UniversellesObjekt

Die a) ist richtig. Zu den anderen Sachen: Kennst du topologische Räume, oder musst du mit metrischen Räumen und epsilons rumrechnen?

Bezug
        
Bezug
Topologie: Diverse Begriffe: Teilaufgabe a)
Status: (Antwort) fertig Status 
Datum: 22:36 Mo 03.03.2014
Autor: Richie1401

Hallo,

> Hallo zusammen
>  
> Haben gerade begonnen mit den Grundbegriffen der Topologie.
> Und ich habe da noch so meine Mühe damit...
> Folgende Aufgabe sollte ich lösen:
>
> a) Finde je ein Beispiel für eine Teilmenge von [mm]\IR^n,[/mm] die
> ihren Rand enthält; ihren Rand teilweise, aber nicht ganz
> enthält; ihren Rand nicht enthält.
>
> b) Es sei (X,d) ein metrischer Raum und A [mm]\subset[/mm] X. Zeige:
> i) [mm]\partial A=\partial(A^c)=\partial(A^{\circ})=\partial(\overline{A})[/mm]
>  
> ii) [mm]\overline{A}=A^{\circ} \cup \partial(A)[/mm]  
> [mm](\cup[/mm] sollte noch einen Punkt oben drauf haben, also eine
> ausschliessende Disjunktion sein)
>  
> c) [mm]\partial(AxB)=(\partial(A)[/mm] x [mm]\overline{B}) \cup (\overline{A}[/mm]
> x [mm]\partial(B))[/mm]
>  
>
>
>
> So nun zu meinem Lösungsvorschlag:
>
> a) Hier habe ich mir überlegt, dass ich doch einfach die
> folgenden Intervalle nehmen kann:
>  [0,1]: Teilmenge von [mm]\IR[/mm] mit Rand
>  [0,1): Teilmenge von [mm]\IR,[/mm] die den Rand nur teilweise
> enthält
>  (0,1): Teilmenge von [mm]\IR,[/mm] die den Rand nicht enthält
>  
> Kann ich das so machen?

Im Prinzip schon. Aber denk dran, dass du Beispiele für den [mm] \IR^n [/mm] angeben sollst. Verallgemeinere also deine Aussage.

>
>
> b)
> i) Hier gilt ja: x [mm]\in \partial(A) \gdw \forall \varepsilon>0: \exists x_0,x_1 \in B_{\varepsilon},[/mm]
> s.d. [mm]x_0 \not\in[/mm] A & [mm]x_1 \in[/mm] A
> So nun für [mm]\partial(A^c):[/mm]
> x [mm]\in \partial(A^c) \gdw \forall \varepsilon>0: \exists x_0,x_1 \in B_{\varepsilon},[/mm]
> s.d. [mm]x_0 \not\in A^c[/mm] & [mm]x_1 \in A^c[/mm]
> Nach Definition des Komplements gilt nun:
> [mm]\gdw \forall \varepsilon>0: \exists x_0,x_1 \in B_{\varepsilon},[/mm]
> s.d. [mm]x_0 \not\in X\A[/mm] & [mm]x_1 \in X\A[/mm]
> wobei [mm]x_0 \not\in X\A \gdw x_0 \in[/mm] A & [mm]x_1 \in X\A \gdw x_1 \not\in[/mm]
> A
>  
> Kann ich das so machen? Oder könnte ich es auch anders
> zeigen?
>
>
> ii)
>  Hier habe ich nun einige Schwierigkeiten:
> Es gilt nach Definition des Abschlusses:
> x [mm]\in \overline{A} \gdw[/mm] x [mm]\in[/mm] A [mm]\cup[/mm] x [mm]\in \partial(A)[/mm]
>
> Wie kann ich nun von dieser Definition aus, zeigen dass die
> Behauptung gilt?
>
>
> c) Hier sollte ich einen Tipp von euch haben...??
>  
>
>
> Vielen Dank für eure Hilfe!
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de