www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Topologie im Raum
Topologie im Raum < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologie im Raum: offen,abgeschlossen
Status: (Frage) beantwortet Status 
Datum: 22:46 Di 03.03.2009
Autor: studi08

Aufgabe
Sei f: [mm] \IR \to \IR [/mm] eine stetige Funktion,betrachte [mm] \IR [/mm] mit der euklidischen Metrik.
Zeige oder wiederlege folgende Aussagen:
i)f(U) offen [mm] \Rightarrow [/mm] U offen
U offen [mm] \Rightarrow [/mm] f(U) offen
i)f(U) abgeschlossen [mm] \Rightarrow [/mm] U abgeschlossen
U abgeschlossen [mm] \Rightarrow [/mm] f(U) abgeschlossen

Wir haben erst gerade mit der Topologie begonnen und deshalb bin ich noch nicht so bekannt mit diesen Begriffen.
Die Euklidische Metrik kennen ich: d(x,y)=|x-y|.
Ich sehe aber keinen Ansatz,wie ich anfangen soll und bin deshalb über jeden Tipp erfreut.


        
Bezug
Topologie im Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Di 03.03.2009
Autor: Merle23


> Sei f: [mm]\IR \to \IR[/mm] eine stetige Funktion,betrachte [mm]\IR[/mm] mit
> der euklidischen Metrik.
>  Zeige oder wiederlege folgende Aussagen:
>  i)f(U) offen [mm]\Rightarrow[/mm] U offen
> U offen [mm]\Rightarrow[/mm] f(U) offen
>  i)f(U) abgeschlossen [mm]\Rightarrow[/mm] U abgeschlossen
>  U abgeschlossen [mm]\Rightarrow[/mm] f(U) abgeschlossen
>  Wir haben erst gerade mit der Topologie begonnen und
> deshalb bin ich noch nicht so bekannt mit diesen
> Begriffen.
>  Die Euklidische Metrik kennen ich: d(x,y)=|x-y|.
>  Ich sehe aber keinen Ansatz,wie ich anfangen soll und bin
> deshalb über jeden Tipp erfreut.

Die topologische Definition von "stetig" ist "Urbilder offener Mengen sind offen".

Damit solltest du sehen können welche Aussagen wohl falsch und welche wohl richtig sind.

Bezug
                
Bezug
Topologie im Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:37 Di 03.03.2009
Autor: studi08

Aufgabe
Vielen Dank!
Wenn ich das also richtig sehe bedeutet dies folgendes:
A [mm] \subset [/mm] U, A offen in U [mm] \Rightarrow f^{-1}(A) [/mm] offen in X
d.h U offen [mm] \Rightarrow [/mm] f(U) offen ist richtig.Dasselbe gilt für die Abgeschlossenheit.

wie kann ich aber zeigen,dass f(U)offen [mm] \Rightarrow [/mm] U offen falsch ist?

Bezug
                        
Bezug
Topologie im Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:43 Di 03.03.2009
Autor: Merle23


> Vielen Dank!
>  Wenn ich das also richtig sehe bedeutet dies folgendes:
>  A [mm]\subset[/mm] U, A offen in U [mm]\Rightarrow f^{-1}(A)[/mm] offen in
> X

Ähmm... ja. Nur wieso beziehst du dich auf ein A im U? Du hast f: [mm] \IR \to \IR [/mm] stetig und dann: Wenn U offen ist in [mm] \IR, [/mm] dann ist [mm] f^{-1}(U) [/mm] offen in [mm] \IR. [/mm]

>  d.h U offen [mm]\Rightarrow[/mm] f(U) offen ist richtig.Dasselbe
> gilt für die Abgeschlossenheit.
>

Das ist doch gerade anders rum als oben.

> wie kann ich aber zeigen,dass f(U)offen [mm]\Rightarrow[/mm] U offen
> falsch ist?

Bezug
                                
Bezug
Topologie im Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:02 Mi 04.03.2009
Autor: studi08

Aufgabe
Du hast natürlich recht.Aus den Angaben folgt also:
f(U)offen [mm] \Rightarrow [/mm] U offen ist richtig.

Wie kann ich nun aber zeigen,dass U offen [mm] \Rightarrow [/mm] f(U) offen nicht richtig ist?

Bezug
                                        
Bezug
Topologie im Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 05:20 Mi 04.03.2009
Autor: angela.h.b.


> Du hast natürlich recht.Aus den Angaben folgt also:
>  f(U)offen [mm]\Rightarrow[/mm] U offen ist richtig.
>  Wie kann ich nun aber zeigen,dass U offen [mm]\Rightarrow[/mm] f(U)
> offen nicht richtig ist?

Hallo,

such bzw. bastele ein Gegenbeispiel, eine stetige Funktion, für welche es nicht gilt.

Du kannst Dir ja erstmal irgendein offenes Intervall nehmen und Dir dann überlegen, wie die Funktion daürber aussehen müßte.

Gruß v. Angela





Bezug
                                        
Bezug
Topologie im Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 Mi 04.03.2009
Autor: fred97

Konstante Funktionen sind stetig !

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de