www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Topologie metrischer Raeume
Topologie metrischer Raeume < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologie metrischer Raeume: Tipp
Status: (Frage) beantwortet Status 
Datum: 00:08 Mi 17.09.2008
Autor: nick_twisp

Aufgabe
Gegeben ist ein metrischer Raum $(M,d)$ und fuer [mm] $x\in [/mm] M$ und [mm] $\epsilon [/mm] > 0$ folgende Mengen

1. $U(x, [mm] \epsilon) [/mm] := [mm] \{ y \in M : d(x,y) < \epsilon \}$ [/mm]
2. [mm] $B(x,\epsilon) [/mm] := [mm] \{ y \in M : d(x,y) \leq \epsilon \}$ [/mm]
3. [mm] $S(x,\epsilon) [/mm] := [mm] \{ y \in M : d(x,y) = \epsilon \}$ [/mm]

Man soll zeigen, dass die erste Menge offen und die beiden anderen abgeschlossen sind.

Das die erste Menge offen ist, kriege ich noch problemlos mit der Definition fuer metrische Raeume (siehe http://mo.mathematik.uni-stuttgart.de/kurse/kurs26/seite1.html) hin.

Mein erster Ansatz bei der zweiten Menge waere zu zeigen, dass $M [mm] \backslash B(x,\epsilon)$ [/mm] offen ist, aber irgendwie komm ich da nicht so recht weiter.
Bin ich auf dem richtigen Weg oder sollte ich es anders probieren? Bei der Gelegenheit ein Tipp fuer die dritte Menge waer auch nicht schlecht.

Viele Gruesse
Nick

        
Bezug
Topologie metrischer Raeume: Antwort
Status: (Antwort) fertig Status 
Datum: 00:41 Mi 17.09.2008
Autor: pelzig


> Mein erster Ansatz bei der zweiten Menge waere zu zeigen,
> dass [mm]M \backslash B(x,\epsilon)[/mm] offen ist, aber irgendwie
> komm ich da nicht so recht weiter.
>  Bin ich auf dem richtigen Weg oder sollte ich es anders
> probieren? Bei der Gelegenheit ein Tipp fuer die dritte
> Menge waer auch nicht schlecht.

Ich fürchte du hast keine andere Wahl, denn so ist Abgeschlossenheit in topologischen Räumen nunmal definiert. Vielleicht zeigst du mal genauer, an welcher Stelle du nicht weiter kommst.

Gruß, Robert

Bezug
        
Bezug
Topologie metrischer Raeume: Antwort
Status: (Antwort) fertig Status 
Datum: 09:20 Mi 17.09.2008
Autor: fred97


> Gegeben ist ein metrischer Raum [mm](M,d)[/mm] und fuer [mm]x\in M[/mm] und
> [mm]\epsilon > 0[/mm] folgende Mengen
>  
> 1. [mm]U(x, \epsilon) := \{ y \in M : d(x,y) < \epsilon \}[/mm]
>  2.
> [mm]B(x,\epsilon) := \{ y \in M : d(x,y) \leq \epsilon \}[/mm]
>  3.
> [mm]S(x,\epsilon) := \{ y \in M : d(x,y) = \epsilon \}[/mm]
>  
> Man soll zeigen, dass die erste Menge offen und die beiden
> anderen abgeschlossen sind.
>  Das die erste Menge offen ist, kriege ich noch problemlos
> mit der Definition fuer metrische Raeume (siehe
> http://mo.mathematik.uni-stuttgart.de/kurse/kurs26/seite1.html)
> hin.
>  
> Mein erster Ansatz bei der zweiten Menge waere zu zeigen,
> dass [mm]M \backslash B(x,\epsilon)[/mm] offen ist, aber irgendwie
> komm ich da nicht so recht weiter.
>  Bin ich auf dem richtigen Weg oder sollte ich es anders
> probieren? Bei der Gelegenheit ein Tipp fuer die dritte
> Menge waer auch nicht schlecht.
>  
> Viele Gruesse
>  Nick

Sei (M,d) ein metrischer Raum und A eine Teilmenge von M. Dann gilt:

A ist abgeschlossen [mm] \gdw [/mm]  für jede konvergente Folge [mm] (x_n) [/mm] in A gehört auch der Limes dieser Folge zu A.

Z.Z.: [mm] B(x,\epsilon) [/mm] ist abgeschlossen.

Sei also [mm] (x_n) [/mm] ein konvergente Folge  in [mm] B(x,\epsilon) [/mm] und [mm] x_0 [/mm] deren Limes.

Dann [mm] d(x_n,x) \le \epsilon [/mm] für jedes n. Da die Metrik stetig ist folgt mit n --> [mm] \infty: d(x_0,x) \le \epsilon. [/mm] Also [mm] x_0 \in B(x,\epsilon) [/mm]


FRED







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de