www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Totale Differenzierbarkeit
Totale Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Totale Differenzierbarkeit: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:16 So 20.07.2014
Autor: Ymaoh

Aufgabe
Sei f: [mm] \IR^n [/mm] -> [mm] \IR: [/mm] f(x) = |x|

Berechnen Sie grad(f) für x [mm] \not= [/mm] 0 und beweisen Sie, dass f am Ursprung nicht total differenzierbar ist.

Der Gradient ist:
grad(f) = [mm] \vektor{\bruch{(x_1)}{|x|} \\...\\\bruch{(x_n)}{|x|} } [/mm]
Das, ist ja erstmal kein Problem. Jetzt soll gezeigt werden, dass f im Ursprung nicht total differenzierbar ist. Ich weiß nicht genau, wie man das macht. Ich wollte es versuchen über den Ansatz:
[mm] f(x_0 [/mm] + h) = [mm] f(x_0) [/mm] + [mm] gradf(x_0)h [/mm] + r(h)
Aber da [mm] x_0 [/mm] = 0 ist (deru Ursprung), und sowohl f(0) als auch gradf(0) jeweils Null sind, kommt da raus:
f(h) = r(h),
und das geht beides gegen Null für h gegen Null.
Und das sagt mir doch nichts, oder?


        
Bezug
Totale Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 So 20.07.2014
Autor: fred97

f ist ja noch nicht mal partiell differenzierbar im Nullpunkt !

FRED

Bezug
                
Bezug
Totale Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 So 20.07.2014
Autor: Ymaoh

Weil die [mm] \bruch{x_i}{|x|} [/mm]
für x = 0 nicht definiert sind?

Bezug
                        
Bezug
Totale Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 So 20.07.2014
Autor: fred97


> Weil die [mm]\bruch{x_i}{|x|}[/mm]
>  für x = 0 nicht definiert sind?

Nein. Wäre f z.B. im Nullpunkt partiell nach [mm] x_1 [/mm] differenzierbar, so müsste


[mm] \limes_{h\rightarrow 0}\bruch{f(h,0,...,0)-f(0,...,0)}{h} [/mm]

existieren . Ist das der Fall ?

FRED

Bezug
                                
Bezug
Totale Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:59 Mo 21.07.2014
Autor: Ymaoh

Nein, denn das wär nicht mehr von h abhängig.
Ich sollte mir wohl angewöhnen, direkt mit den Definitionen zu arbeiten...

Bezug
                                        
Bezug
Totale Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:04 Mo 21.07.2014
Autor: fred97


> Nein, denn das wär nicht mehr von h abhängig.




Was ist los ???

Berechne mal

    [mm] \bruch{f(h,0,...,0)-f(0,...,0)}{h} [/mm]

FRED


>  Ich sollte mir wohl angewöhnen, direkt mit den
> Definitionen zu arbeiten...


Bezug
                                                
Bezug
Totale Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 Mo 21.07.2014
Autor: Ymaoh

Naja, mit f(x) = |x| ist doch:
f(h,0,.....,0) = h
und f(0) = 0,
Also:

[mm] \bruch{h - 0}{h} [/mm] = 1
?


Bezug
                                                        
Bezug
Totale Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 Mo 21.07.2014
Autor: fred97


> Naja, mit f(x) = |x| ist doch:
>  f(h,0,.....,0) = h

Nein !!!  mit [mm] x=(x_1,...,x_n) [/mm] ist doch [mm] f(x)=\wurzel{x_1^2+...+x_n^2} [/mm]

Was ist dann  f(h,0,.....,0) ?

FRED

>  und f(0) = 0,
>  Also:
>  
> [mm]\bruch{h - 0}{h}[/mm] = 1
>  ?
>  


Bezug
                                                                
Bezug
Totale Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Mo 21.07.2014
Autor: Ymaoh

Hö?
Na:

f(h,0,.....,0) = [mm] \wurzel{h^2 + 0 + .... + 0}= [/mm] h

Oder nicht?

Bezug
                                                                        
Bezug
Totale Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Mo 21.07.2014
Autor: fred97


> Hö?
>  Na:
>  
> f(h,0,.....,0) = [mm]\wurzel{h^2 + 0 + .... + 0}=[/mm] h
>  
> Oder nicht?

Es ist [mm] \wurzel{h^2}=|h| [/mm]

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de