www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Totale Unimodularität beweisen
Totale Unimodularität beweisen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Totale Unimodularität beweisen: Koeffizientenmatrix eines LP
Status: (Frage) überfällig Status 
Datum: 16:35 So 19.01.2014
Autor: custos

Aufgabe
Schreiben Sie ein lineares Programm, welches für einen bipartiten Graphen [mm]G=(V,E)[/mm] das Problem des maximalen bipartiten Matchings löst. Zeigen Sie, dass die Lösung des linearen Programmes ganzzahlig ist.

-- bitte verschieben, falls falsches Forum --

Mein Ansatz ist folgender: Sei [mm]V=\{y_1,…,y_k\}\cup\{z_1,…,z_{k'}\}[/mm]. Für jede Kante im bipartiteten Graphen wählen sei [mm]x_{ij}=(y_i,z_j)[/mm]. Dann können wir ein lineares Programm so definieren:

maximiere [mm]\sum_{i,j} x_{ij}[/mm] unter den Nebenbedingungen:

[mm]\sum_jx_{ij}\leq 1[/mm] (für [mm]i=1 … k[/mm])
[mm]\sum_ix_{ij}\leq 1[/mm] (für [mm]j=1 … k'[/mm])
[mm]x_{ij}\geq 0[/mm] (für alle [mm]x_{ij}\in E[/mm])

Soweit, so gut – ich habe also Nebenbedingungen der Form [mm]Ax=b[/mm], wobei [mm]b[/mm] ganzzahlig (nur Einsen) und [mm]A[/mm] eine [mm]|E|\times|V|[/mm]-Matrix mit Einsen und Nullen ist. Um zu zeigen, dass die Lösungen des LP ganzzahlig sind, bietet es sich an zu zeigen, dass die Matrix [mm]A[/mm] total unimodular ist. Wenn ich mir ein Beispiel nehme, trifft das auch zu, aber wie kann ich das allgemein für beliebige Graphen/LP beweisen? Da fehlt mir völlig der Ansatz.

Danke für eure Tipps!

        
Bezug
Totale Unimodularität beweisen: Zwei Einsen pro Spalte
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 So 19.01.2014
Autor: custos

Hab eben eine Erkenntnis gewonnen: In der Matrix hat jede Spalte genau zwei Einsen und sonst ausschließlich Nullen! Ist das hinreichend für totale Unimodularität?

Bezug
        
Bezug
Totale Unimodularität beweisen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 21.01.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de