www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Totales Differential
Totales Differential < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Totales Differential: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 Fr 16.05.2008
Autor: bore

Aufgabe
[mm] dO=(2*\pi*h+4*\pi*r)*dr+2*\pi*r*dh [/mm]

Dies ist das Resultierende totale Differential einer Oberflächenberechnung.

Nun muss ich diese Aufgabe noch ausrechnen.


Nun habeich Mühe mit dem ausrechnen des dO
Kann mir jemand erklären wie ich das machen muss mit den Ableitungen dr und dh?

        
Bezug
Totales Differential: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Fr 16.05.2008
Autor: bore

Vielleicht kommt die Antwort ja noch...

Besten Dank und freundliche Grüsse

Bezug
                
Bezug
Totales Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Fr 16.05.2008
Autor: MathePower

Hallo bore,

> Vielleicht kommt die Antwort ja noch...

Das totale Differential einer Funktion ( hier: [mm]O\left(r,h\right)[/mm] ) schreibt sich laut []Wikipedia so:

[mm]dO = \bruch{\partial O}{\partial r}*dr + \bruch{\partial O}{\partial h}*dh[/mm]

>  
> Besten Dank und freundliche Grüsse

Gruß
MathePower

Bezug
        
Bezug
Totales Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Fr 16.05.2008
Autor: MathePower

Hallo bore,

> [mm]dO=(2*\pi*h+4*\pi*r)*dr+2*\pi*r*dh[/mm]
>  Dies ist das Resultierende totale Differential einer
> Oberflächenberechnung.
>
> Nun muss ich diese Aufgabe noch ausrechnen.
>
>
> Nun habeich Mühe mit dem ausrechnen des dO
>  Kann mir jemand erklären wie ich das machen muss mit den
> Ableitungen dr und dh?

Siehe Antwort in diesem Post

Gruß
MathePower

Bezug
        
Bezug
Totales Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 So 18.05.2008
Autor: Martinius

Hallo,

> [mm]dO=(2*\pi*h+4*\pi*r)*dr+2*\pi*r*dh[/mm]
>  Dies ist das Resultierende totale Differential einer
> Oberflächenberechnung.
>
> Nun muss ich diese Aufgabe noch ausrechnen.
>
>
> Nun habeich Mühe mit dem ausrechnen des dO
>  Kann mir jemand erklären wie ich das machen muss mit den
> Ableitungen dr und dh?


dO ist eine gute Näherung für den Fehler den Du machst, wenn Du zu Oberflächenberechnung deine Zylinder-Formel [mm] $O=2*\pi*r*h+2*\pi*r^2$ [/mm] verwendest und vorher r mit dem Fehler dr und h mit dem Fehler dh gemessen hast, solange die Einzelmessfehler nicht bzu groß werden.

Du setzt also h und r in deine Formel für dO ein, und für dr nimmst Du deinen Meßfehler [mm] \Delta [/mm] r und für dh deinen Meßfehler [mm] \Delta [/mm] h. Eventuell musst Du deine Messfehler schätzen.


LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de