www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mechanik" - Trägheitsmoment einer Kugel
Trägheitsmoment einer Kugel < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trägheitsmoment einer Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Sa 12.12.2009
Autor: notinX

Ich möchte das Trägheitsmoment einer Kugel berechnen, komme aber nicht auf das richtige Ergebnis.

Das Trägheitsmoment ist wie folgt definiert:
[mm] $I=\int r^{2}\mathrm{dm}=\rho\int r^{2}\mathrm{dV}$ [/mm]
das Volumenelement lautet in Kugelkoordinaten:
[mm] $\mathrm{dV}=r^{2}\sin\theta\,\mathrm{dr\,}\mathrm{d\theta}\,\mathrm{d\varphi}$ [/mm]

[mm] $\Rightarrow I=\rho\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{R}r^{4}\sin\theta\,\mathrm{dr\,}\mathrm{d\theta\,}\mathrm{d\varphi}$ [/mm]

[mm] $\Rightarrow I=\rho\int_{0}^{2\pi}\int_{0}^{\pi}\frac{R^{5}}{5}\sin\theta\,\mathrm{d\theta}\,\mathrm{d\varphi}$ [/mm]

[mm] $\Rightarrow I=\rho\int_{0}^{2\pi}\frac{2r^{5}}{5}\,\mathrm{d\varphi}$ [/mm]

[mm] $\Rightarrow I=\rho\frac{4\pi r^{5}}{5}$ [/mm]

mit [mm] $V=\frac{4}{3}\pi r^3$ [/mm] erhalte ich:

[mm] $I=\frac{3}{5}mr^2$ [/mm] was leider nicht stimmt. Wo liegt mein Fehler?

        
Bezug
Trägheitsmoment einer Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 02:20 So 13.12.2009
Autor: Event_Horizon

Hallo!

Dein R ist stets der Abstand eines Volumenelementes vom Ursprung.

Allerdings ist das Trägheitsmoment ja über den Abstand zur Drehachse definiert, das ist ein anderes r.

Soll heißen: in Kugelkoordinaten ist r²=x²+y²+z²  während du eher r²=x²+y² für die Roation um die z-Achse benötigst...
Ersetze mal [mm] $r\mapsto r\sin\theta$, [/mm] dann sollte das klappen.

Bezug
                
Bezug
Trägheitsmoment einer Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 So 13.12.2009
Autor: notinX

Welches r soll ich durch [mm] $r\sin\theta$ [/mm] ersetzen? Im Volumenelement steckt doch schon [mm] $r\sin\theta$ [/mm] drin.

Bezug
                        
Bezug
Trägheitsmoment einer Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 So 13.12.2009
Autor: Event_Horizon

Hallo!

Gut aufgepaßt! Das r im Volumenelement bleibt, wie es ist, das ist ein Gewichtungsfaktor, weil diese "Zwiebelschalenstücke" nach außen hin größer werden. Du mußt nur das nur für das r² aus der Definition des Trägheistmoments machen.

Bezug
                                
Bezug
Trägheitsmoment einer Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 So 13.12.2009
Autor: notinX

Ich verstehe nicht so ganz was Du meinst. Kannst Du mir bitte die korrigierte Gleichung die integriert werden muss nennen?

Bezug
                                        
Bezug
Trägheitsmoment einer Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 So 13.12.2009
Autor: rainerS

Hallo!

> Ich verstehe nicht so ganz was Du meinst. Kannst Du mir
> bitte die korrigierte Gleichung die integriert werden muss
> nennen?

Es geht nicht um eine korrigierte Gleichung. Du hast an zwei Stellen r geschreiben, obwohl es sich um verschiedene Größen handelt. In der Definitionsgleichung des Trägheitsmoments bedeutet das r den Abstand von der Drehachse. In deiner Integration in Kugelkoordinaten hast du das gleiche Symbol r für den Radius im Volumenelement verwendet.

Schreibe also zum Beispiel $r'$ für deine Integrationsvariable im Volumenelement(den Abstand vom Ursprung)!

  [mm]I=\rho\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{R}r^{2} r'^2 \sin\theta\,\mathrm{dr'\,}\mathrm{d\theta\,}\mathrm{d\varphi} [/mm]

Wenn du die z-Achse als Drehachse nimmst, ist der Abstand von der Drehachse [mm] $r=r'\sin\theta$. [/mm]

Damit sollte das richtige Ergebnis herauskommen.

Viele Grüße
   Rainer

Bezug
                                                
Bezug
Trägheitsmoment einer Kugel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:39 Mo 14.12.2009
Autor: notinX

Jetzt hab ichs verstanden. Dankeschön.
mit [mm] $r\sin\theta$ [/mm] als senkrechtem Abstand kommt auch das richtige Ergebnis raus:
$ [mm] I=\rho\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{R}r^2(r\sin\theta)^2 \sin\theta\,\mathrm{dr\,}\mathrm{d\theta\,}\mathrm{d\varphi}=\rho\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{R}r^4\sin^3\theta\,\mathrm{dr\,}\mathrm{d\theta\,}\mathrm{d\varphi}=\frac{2}{5}MR^2$ [/mm] (mit [mm] $M=\rho\cdot\frac{4}{3}\pi{r}^3$) [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de