www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - Trägheitstensoren
Trägheitstensoren < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trägheitstensoren: Trägheitstensor Drehimpuls
Status: (Frage) beantwortet Status 
Datum: 23:29 Mi 20.01.2010
Autor: dom88

Hallo,

Ich muss momentan von der Uni aus sehr viel mit Trägheitstensoren rechnen. Einer der ertsne Fragen, die ich mir aber gestellt habe, war, was unterscheidet den Tensor von der Matrix und welche Vorteile verschafft er mir.

Angenommen ich habe einen Körper dessen Trägheitsmomente ich für alle Achsen ausrechnen soll. Dabei fallen mir natürlich erst einmal die Momente für die X-, Y-, Z-Achse ein. Dann hab ich aber noch gelesen, dass es sowas wie Momente von Xy-, XZ-, ZY-"Achsen" geben soll. Sogenannte Deviationsmomente.
Wie kann ich die Komponenten die im Tensor stehen begreifen? Wie kann ich das "Bild" meines abgebildeten Vektors interpretieren. Ist das der Drehimpuls? entweder parallel oder nicht.

Die fragen beziehen sich immer auf nicht diagonale Tensoren, also die Hauptträgheistachsen sollen nicht das Koordinatensystem bilden.

Viele Fragen...ich weiß. Nur unser Prof hat die doofe angewohntheit mit der Tür isn haus zu platzen und kaum hintergrundinfo zu geben.
ich bin im ersten semester. da hat man noch nicht soviel übung mit tensoren. daher die fragen.

danke

dom

        
Bezug
Trägheitstensoren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:03 Do 21.01.2010
Autor: Event_Horizon

Hallo!

In der Pysik gibt es oft keinen Unterschied zwischen Tensor und Matrix. Vielleicht ein wichtiges Gegenbeispiel: Das Vektorprodukt läßt sich auch mit einem Tensor schreiben, das wäre sowas wie eine 3D-Matrix der Größe [mm] 3\times3\times3 [/mm] .

Eine andere Schreibweise für das Skalarprodukt ist [mm] z_i=\sum_j\sum_k\epsilon_{ijk}x_jy_k [/mm] wobei [mm] \epsilon_{ijk}=0 [/mm] wenn von i, j, k zwei Zahlen gleich sind, =1 wenn i, j, k die Zahlenfolge 1, 2, 3 bilden. für jede andere Zahlenfolge schaust du, wie oft du die Ziffern vertauschen mußt, bis wieder 1, 2, 3 da steht. Bei ungraden Anzahlen an Vertauschungen ist [mm] \epsilon_{ijk}=-1, [/mm] sonst [mm] \epsilon_{ijk}=+1 [/mm] . Diese [mm] \epsilon_{ijk} [/mm] sind dann die Einträge in dem genannten Tensor.

Zur Physik:
Betrachte den Tensor mal als normale lin. Abbildung.
Wenn die Deviationsmomente verschwinden, die Deviationsmomente also null sind, bist du im Hauptachsensystem. Wenn du nun aber dein Koordinatensystem wechselst, wird sich auch die Matrix ändern (Koordinatentransdormation). Dann können auch die Elemente abseits der Diagonalen Werte ungleich 0 annehmen.

Wenn du also einen solchen Tensor findest, dann weißt du, daß die Trägheitsachsen nicht den Koordinatenachsen entsprechen. (Dazu könntest du die Eigenvektoren des Tensors berechnen, das sind die Trägheitsachsen)


Oder anders: Wenn sich ein Gegenstand nicht um eine Hauptträgheitsachse dreht, dann stehen im Drehimpuls Anteile aller Hauptträgheitsachsen drin. Im Hauptträgheitssystem ist das einfach zu verstehen, ansonsten steckt da eben noch etwas lineare Algebra zur Umrechnung drin.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de