Transf. DGL-System -> DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 02:32 So 29.07.2012 | Autor: | brubbus |
Hallo allerseits,
Es geht um Folgendes:
Ich möchte ein DGl-System in eine DGL 2. Ordnung transformieren.
[mm] \vektor{x_1 \\ x_2}' [/mm] = [mm] \pmat{ \alpha & 1 \\ \beta & 0 } \vektor{x_1 \\ x_2}
[/mm]
[mm] x_1 [/mm] sowie [mm] x_2 [/mm] hängen von der Zeit ab [mm] (x_1=x_1(t),x_2=x_2(t), [/mm] die Parameter [mm] \alpha,\beta [/mm] sind konstant und ungleich 0)
Dafür nehme ich mir zuerst die 1. Zeile:
[mm] x_1' [/mm] = [mm] \alpha x_1 [/mm] + [mm] x_2
[/mm]
leite nach der Zeit ab
[mm] x_1'' [/mm] = [mm] \alpha x_1' [/mm] + [mm] x_2'
[/mm]
und ersetze [mm] x_2 [/mm] entsprechend der 2. Zeile
[mm] x_1'' [/mm] = [mm] \alpha x_1' [/mm] + [mm] \beta x_1
[/mm]
Soweit sogut.
Die Eigenwerte der Matrix stimmen auch mit denen der DGL 2. Ordnung überein.
Wenn ich jetzt aber wieder ein DGL-System haben möchte erhalte ich
[mm] \vektor{x_1 \\ x_2}' [/mm] = [mm] \pmat{ 0 & 1 \\ \beta & \alpha } \vektor{x_1 \\ x_2}
[/mm]
Warum komme ich nicht mehr auf die ursprüngliche Matrix?
Sind beide DGL-Systeme äquivalent?
Habe ich irgendetwas falsch gemacht?
habe ich irgendetwas richtig gemacht?
Ich zerbreche mir schon eine ganze Weile den Kopf darüber, aber komm auch nicht drauf.
PS: Die Sufu / google habe ich benutzt, jedoch erfolglos (Stichwörter nach was ich suchen kann würden mir auch schon helfen)
Danke im Vorraus.
Grüße,
Marvin
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:02 So 29.07.2012 | Autor: | leduart |
Hallo
du hast nichts falsch gemacht. vielleicht hättest du besser beim aufstellen des neuen Dgl andere variablen verwendet, wie y1,y2, die Dgl systeme sind nicht genau dasselbe, wiel du eine Freiheit hast das GS aufzustellen. du kannst x2=r*x1' wählen, oder eine dgl 2ter ordnung für x2 aufstellen. jedesmal kannst du auf verschiedene wiesen ein system kriegen.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 02:24 Mo 30.07.2012 | Autor: | brubbus |
Schonmal vielen Dank für die Antwort.
Korrekt, ich hätte wohl andere Variablen benutzen sollen...
Was ich aber immer noch nicht sehe ist:
Wie kann ich denn die DGL wieder in die Form des ursprünglichen DGL-Systems bringen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:51 Mo 30.07.2012 | Autor: | leduart |
Hallo
ich denke
y1=x1'; [mm] y2=\beta*x1 [/mm] kann das
gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:10 Di 31.07.2012 | Autor: | brubbus |
Ach Mensch, der Wald und die Bäume...
Danke
|
|
|
|