www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Transformationsformel , Dichte
Transformationsformel , Dichte < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationsformel , Dichte: Erklärung
Status: (Frage) beantwortet Status 
Datum: 17:01 Do 01.04.2010
Autor: phskate

Aufgabe
Sei X~Exp(lampda) ,lampda > 1, d.h. X hat Dichte f(x)= lampda*e^(-lampda*x) , x>=0 , f(x)=0 , x<0
(a) Berechnen die [mm] Ee^X [/mm] mit der Transformationsformel für den Erwartungswert.
(b) Bestimmen sie die dichte von [mm] e^X [/mm]
(c)Bestimmen sie [mm] Ee^X [/mm] über die Dichte von [mm] e^X [/mm]

Hi,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
meine Frage betrifft die angegebene Aufgabe.
Ich höre zu Zeit Stochastik 0 und verstehe leider nicht genau , wie genau ich eine Dichtefunktion finden  (Aufgabe b)

bei (a) bin ich mir nicht sicher was gemeint ist.. soll ich den Erwartungswert berechnen? wenn dann hätte ich 1/lampda raus.. aber ich habe das mit dem Integral bemacht
also Integral von 0-unendlich von xf(x)...  stimmt das?

und bei (c) konnte ich ncihts machen weil mir die Diche fehlt ;) ... ich dachte die Dichte ist in der aufgabe schon gegeben..

Danke schonmal


http://www.anderesmatheforum.de/

        
Bezug
Transformationsformel , Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Fr 02.04.2010
Autor: luis52


> Sei X~Exp(lampda) ,lampda > 1, d.h. X hat Dichte f(x)=
> lampda*e^(-lampda*x) , x>=0 , f(x)=0 , x<0
>  (a) Berechnen die [mm]Ee^X[/mm] mit der Transformationsformel für
> den Erwartungswert.
>  (b) Bestimmen sie die dichte von [mm]e^X[/mm]
>  (c)Bestimmen sie [mm]Ee^X[/mm] über die Dichte von [mm]e^X[/mm]
>  Hi,
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>   meine Frage betrifft die angegebene Aufgabe.
>  Ich höre zu Zeit Stochastik 0 und verstehe leider nicht
> genau , wie genau ich eine Dichtefunktion finden  (Aufgabe
> b)

Bestimme die Verteilungsfunktion [mm] $G(y)=P(\exp(X)\le [/mm] y)$ und leite sie ab.


>  
> bei (a) bin ich mir nicht sicher was gemeint ist.. soll ich
> den Erwartungswert berechnen? wenn dann hätte ich 1/lampda
> raus.. aber ich habe das mit dem Integral bemacht
>  also Integral von 0-unendlich von xf(x)...  stimmt das?

[notok] Du hast den Erwartungswert von $X$ und nicht den von [mm] $\exp(X)$ [/mm] bestimmt. Berechne

[mm] $\int_0^\infty\exp(x)f(x)\,dx$ [/mm]

>  
> und bei (c) konnte ich ncihts machen weil mir die Diche
> fehlt ;) ... ich dachte die Dichte ist in der aufgabe schon
> gegeben..
>  
> Danke schonmal
>
>
> htt://pwww.anderesmatheforum.de/

[verwirrt]


vg Luis

Bezug
                
Bezug
Transformationsformel , Dichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Di 06.04.2010
Autor: phskate

okay da hätte ich noche ne kleine frage, wie kann ich eine verteilungsfunktion genau bestimmen?

zum erwartungswert:
$ [mm] \int_0^\infty\exp(x)f(x)\,dx [/mm] $

also muss ich wenn ich eine dichte berechnen will von etwas einfach das integral berechnen von dem gesuchten [mm] (e^x) [/mm] und f(x) und dann hat mans?

du könntest nicht zufällig an teilaufgabe (a) das mit der transformationsformel zeigen? ich habe hier nur eine im buch die ich nicht ganz verstehe:
E(g(x))=Summe g(xj) * P(X=xj)
aber wie komme ich auf g(x)?

danke schonmal

> > Sei X~Exp(lampda) ,lampda > 1, d.h. X hat Dichte f(x)=
> > lampda*e^(-lampda*x) , x>=0 , f(x)=0 , x<0
>  >  (a) Berechnen die [mm]Ee^X[/mm] mit der Transformationsformel
> für
> > den Erwartungswert.
>  >  (b) Bestimmen sie die dichte von [mm]e^X[/mm]
>  >  (c)Bestimmen sie [mm]Ee^X[/mm] über die Dichte von [mm]e^X[/mm]
>  >  Hi,
>  >  Ich habe diese Frage in keinem Forum auf anderen
>  > Internetseiten gestellt.

>  >   meine Frage betrifft die angegebene Aufgabe.
>  >  Ich höre zu Zeit Stochastik 0 und verstehe leider
> nicht
> > genau , wie genau ich eine Dichtefunktion finden  (Aufgabe
> > b)
>  
> Bestimme die Verteilungsfunktion [mm]G(y)=P(\exp(X)\le y)[/mm] und
> leite sie ab.
>  
>
> >  

> > bei (a) bin ich mir nicht sicher was gemeint ist.. soll ich
> > den Erwartungswert berechnen? wenn dann hätte ich 1/lampda
> > raus.. aber ich habe das mit dem Integral bemacht
>  >  also Integral von 0-unendlich von xf(x)...  stimmt
> das?
>  
> [notok] Du hast den Erwartungswert von [mm]X[/mm] und nicht den von
> [mm]\exp(X)[/mm] bestimmt. Berechne
>  
> [mm]\int_0^\infty\exp(x)f(x)\,dx[/mm]
>  
> >  

> > und bei (c) konnte ich ncihts machen weil mir die Diche
> > fehlt ;) ... ich dachte die Dichte ist in der aufgabe schon
> > gegeben..
>  >  
> > Danke schonmal
> >
> >
> > htt://pwww.anderesmatheforum.de/
>  
> [verwirrt]
>
>
> vg Luis


Bezug
                        
Bezug
Transformationsformel , Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 10:09 Mi 07.04.2010
Autor: luis52


> okay da hätte ich noche ne kleine frage, wie kann ich eine
> verteilungsfunktion genau bestimmen?

Verteilungsfunktion, Dichte oder Erwartungswert?

>  
> zum erwartungswert:
>  [mm]\int_0^\infty\exp(x)f(x)\,dx\,.[/mm]
>  
> also muss ich wenn ich eine dichte berechnen will von etwas
> einfach das integral berechnen von dem gesuchten [mm](e^x)[/mm] und
> f(x) und dann hat mans?

Wenn du den *Erwartungswert* [mm] $\text{E}[g(X)]$ [/mm] einer *stetig* verteilten Zufallsvariablen $X_$ mit Dichte $f_$ berechnen willst, so musst du

[mm] $\text{E}[g(x)]=\int_{-\infty}^{+\infty}g(x)f(x)\,dx$ [/mm]

bestimmen.


>  
> du könntest nicht zufällig an teilaufgabe (a) das mit der
> transformationsformel zeigen?

Bestimme

[mm]\int_{-\infty}^\infty\exp(x)f(x)\,dx=\int_0^\infty\exp(x)\lambda*\exp(-\lambda*x)\,dx\,.[/mm]


> ich habe hier nur eine im
> buch die ich nicht ganz verstehe:
>  E(g(x))=Summe g(xj) * P(X=xj)
>  aber wie komme ich auf g(x)?

Diese Formel gilt fuer diskret verteilte Zufallsvariablen.


vg Luis

PS: Bitte achte etwas auf die Rechtschreibung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de