www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Transformationsmatrix
Transformationsmatrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationsmatrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:54 Mo 23.04.2007
Autor: BotzII

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wir betrachten die [mm] \IR [/mm] -Vektorräume [mm] \IR [/mm] ² und [mm] \IR [/mm] ³ und in diesen die Basen B := {(0,1,1),(1,0,1),(1,1,0)}  bzw. C:={(0,1),(1,0)}. Eine lineare Abbildung Psi € Hom(R³, R²) sei bezüglich dieser Basis durch die Matrix

Psi unten B oben C := 1 2 3
                      4 5 6

()

beschrieben.
(a) Bestimmen Sie die Matrix, welche Psi bezüglich der Standardbasen K2 von R² und K3 von R³ beschreibt.
(b) Weiterhin sei ein vektro v € R³ durch [v]untenK3 := (7,8,9) gegeben. bestimmen Sie das Bild [Psi(v)]untenC  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wie geht das?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Transformationsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Mo 23.04.2007
Autor: angela.h.b.


> Wir betrachten die [mm]\IR[/mm] -Vektorräume [mm]\IR[/mm] ² und [mm]\IR[/mm] ³ und in
> diesen die Basen B := {(0,1,1),(1,0,1),(1,1,0)}  bzw.
> C:={(0,1),(1,0)}. Eine lineare Abbildung [mm] \Psi \in [/mm] Hom(R³, R²)
> sei bezüglich dieser Basis durch die Matrix
>  
> [mm] \Psi_B^C :=\pmat{ 1 & 2&3 \\ 4 & 5 &6} [/mm]  
> beschrieben.

>  (a) Bestimmen Sie die Matrix, welche [mm] \Psi [/mm] bezüglich der
> Standardbasen [mm] K_2 [/mm] von R² und [mm] K_3 [/mm] von R³ beschreibt.


> Wie geht das?

Hallo,

um ein bißchen Hilfe zur Selbsthilfe zu geben, laß uns schauen, was es bedeutet, daß die Abbildung durch

[mm] \Psi_B^C :=\pmat{ 1 & 2&3 \\ 4 & 5 &6} [/mm]   beschrieben wird.

Das sagt uns

[mm] \Psi(\vektor{0 \\ 1\\1})=1*\vektor{0 \\ 1}+4*\vektor{1\\ 0} [/mm]
[mm] \Psi(\vektor{1 \\ 0\\1})=2*\vektor{0 \\ 1}+5*\vektor{1\\ 0} [/mm]
[mm] \Psi(\vektor{1 \\ 1\\0})=3*\vektor{0 \\ 1}+6*\vektor{1\\ 0} [/mm]

Sollst Du nun die Matrix bzgl. der Standardbasen bestimmen, so mußt Du herausfinden, welches die Bilder der kanonischen Einheitsvektoren [mm] e_i [/mm] sind, und diese jeweils als [mm] a_i*\vektor{1 \\ 0}+b_i*\vektor{0 \\ 1} [/mm] darstellen.
Die i-te Spalte der neuen Matrix ist dann [mm] \vektor{a_i \\ b_i}. [/mm]

> b) Weiterhin sei ein vektro v € R³ durch [mm] [v]_{K_3} [/mm] := (7,8,9) gegeben.
> bestimmen Sie das Bild [mm] [Psi(v)]_C [/mm]  

Da man in [mm] \Psi_B^C :=\pmat{ 1 & 2&3 \\ 4 & 5 &6} [/mm] Vektoren in der Darstellung bzgl. B hineinstecken muß,
mußt Du

[mm] (7,8,9)_{K_3} [/mm] zunächst schreiben als
[mm] (7,8,9)_{K_3}=a\vektor{0 \\ 1\\1}+b\vektor{1 \\ 0\\1}+c\vektor{1 \\ 1\\0} [/mm]

Und dann [mm] \pmat{ 1 & 2&3 \\ 4 & 5 &6}*\vektor{a \\ b\\c} [/mm] rechnen.

Das liefert Dir das Bild in der Darstellung bzgl. C.

(Noch eine Bemerkung: wenn Du verstanden hast, wie die Sache funktioniert, kannst/solltest Du Dich mit den Transformationsmatrizen vertraut machen.)

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de