www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Transformationsmatrix Jordan
Transformationsmatrix Jordan < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationsmatrix Jordan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:41 Mo 07.04.2014
Autor: kRAITOS

Aufgabe
Hallo.

Ich hab mal eine Frage bezüglich der Jordanschen Normalform.

Wie findet man eine Transformationsmatrix, wenn man
[mm] S^{-1} [/mm] * A * S = [mm] J_A [/mm]
herausfinden soll, aber nicht genügend Eigenvektoren hat, um S aufzustellen?

Ich weiß, dass S aus den Eigenvektoren besteht. Jedenfalls laut Wikipedia.

Wenn ich jetzt aber z.B. eine 4x4 Matrix habe mit 2 Eigenwerten und zu jedem Eigenwert aber nur einen Eigenvektor, wie würde ich an die anderen beiden Vektoren kommen, um S aufzustellen?


Liebe Grüße und vielen Dank schon mal. :)

        
Bezug
Transformationsmatrix Jordan: Antwort
Status: (Antwort) fertig Status 
Datum: 07:30 Mo 07.04.2014
Autor: angela.h.b.

Hallo,

google mal nach "JNF Kochrezept".
Dort ist das schön erklärt, und es gibt auch Beispiele.

LG Angela

Bezug
                
Bezug
Transformationsmatrix Jordan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Mo 07.04.2014
Autor: kRAITOS

Danke. Habs ausprobiert und es klappt. Jetzt habe ich aber noch eine kurze Frage:

Bekam bei der einen Rechnung anstelle von [mm] \pmat{ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 } [/mm] folgende Matrix heraus [mm] \pmat{ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 }. [/mm] Was bedeutet diese?

Bezug
                        
Bezug
Transformationsmatrix Jordan: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Mo 07.04.2014
Autor: angela.h.b.


> Danke. Habs ausprobiert und es klappt. Jetzt habe ich aber
> noch eine kurze Frage:
>  
> Bekam bei der einen Rechnung anstelle von [mm]\pmat{ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 }[/mm]
> folgende Matrix heraus [mm]\pmat{ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 }.[/mm]
> Was bedeutet diese?

Hallo,

ich vergaß:
mancherorts sind bei der JNF die Einsen unterhalb der Hauptdiagonalen.
Wenn sie oberhalb sein sollen, muß man die Reihenfolge der Vektoren ändern, sie nämlich genau andersrum anordnen.

LG Angela


Bezug
                                
Bezug
Transformationsmatrix Jordan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Mo 07.04.2014
Autor: kRAITOS

Hat das irgendeine besondere Bedeutung oder ist das gehopst wie gesprungen?

Bezug
                                        
Bezug
Transformationsmatrix Jordan: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Mo 07.04.2014
Autor: angela.h.b.

Hallo,

eine tiefere Bedeutung hat das nicht.

Ist bei Euch JNF mit "Einsen oben" definiert, so stelle die JNF stets so auf,
ist sie mit "Einsen unten" definiert, machst Du's halt stets so, daß die Einsen unten sind.

LG Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de