www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Transformationssatz
Transformationssatz < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Mi 02.02.2005
Autor: franceblue

Hallo Ich soll das Integral über der Fläche B ausrrechen mit Hilfe von Polarkoordinaten

B= {(x,y)    / [mm] x^2+y^2<=9, [/mm] x>=0 y>=0}

und dann habe ich noch f(x,y) = [mm] (x^2+y^2)^4 [/mm] gegeben?

Wie bringe ich die drei jetzt unter einen Hut?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Transformationssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mi 02.02.2005
Autor: Paulus

Hallo franceblue

[willkommenmr]

> Hallo Ich soll das Integral über der Fläche B ausrrechen
> mit Hilfe von Polarkoordinaten
>  
> [mm] $B={(x,y)|x^2+y^2<=9, x>=0 y>=0}$ [/mm]
>  

Hier musst du eigentlich nur überlegen, wie denn diese Fläche aussieht und wie man die ganze Fläche überstreichen kann, wenn man Polarkoordinaten einführt.

Ich denke, das ist ein Viertelkreis im 1. Quadranten mit Radius 3.

Damit schliesse ich, dass [mm] $\varphi$ [/mm] von 0 bis [mm] $\bruch{\pi}{2}$ [/mm] läuft, und $r_$ von $0_$ bis $3_$. Das sind dann also die Integrationsgrenzen.

> und dann habe ich noch f(x,y) = [mm](x^2+y^2)^4[/mm] gegeben?
>  
> Wie bringe ich die drei jetzt unter einen Hut?
>  

Du ersetzt jetzt einfach in deiner Funktion $x_$ durch [mm] $r*\cos(\varphi)$ [/mm] und $y_$ durch [mm] $r*\sin(\varphi)$ [/mm]
[mm] $x^2+y^2$ [/mm] wird dann wohl gerade zu [mm] $r^2$ [/mm] ;-)

[mm] $dx\,dy_$ [/mm] ist noch durch [mm] $r*dr\,d\varphi$ [/mm] zu ersetzen ($r_$ ist ja die Funktionaldeterminante beim Uebergang zu Polarkoordinaten).

Kannst du das mal ausführen und uns deine Rechnung zeigen? :-)

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de