www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Transpositionen
Transpositionen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transpositionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Sa 20.09.2008
Autor: kittycat

Aufgabe
(a) Schreiben Sie die Permutationen [mm] \sigma [/mm] = [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 5 & 7 & 6 & 8 & 4 & 1 } [/mm] und [mm] \sigma^{-1} [/mm] und [mm] \sigma^{999} [/mm] als Produkt von zyklischen Permutationen mit paarweise disjunkten Trägern.

(b) Schreiben Sie die Permuationen [mm] \phi [/mm] = (1357)(123)(45678) und [mm] \phi^{-1} [/mm] und [mm] \phi^{999} [/mm] als Produkt von zyklischen Permutationen mit paarweise disjunkten Trägern.

Hallo Mathefreunde,

Könnt ihr mir gerade bei [mm] \sigma^{999} [/mm] bzw. bei [mm] \phi^{999} [/mm] weiterhelfen?!? Irgendwie versteh ich das mit den Transpositionen und den Hochzahlen nicht ... :-(

Soweit bingekommen:
(a) [mm] \sigma [/mm] = (13568)(47)
     [mm] \sigma^{-1} [/mm] = (47) (18653)
     [mm] \sigma^{999} [/mm] = [mm] (47)^{1} (13568)^{4} [/mm]

(b) [mm] \phi [/mm] = (1256)(478)
     [mm] \phi^{-1} [/mm] = (1652)(487)
     [mm] \phi^{999}= (1652)^{3} [/mm] id

Vielen Dank schon mal im Voraus!
Lg Kittycat



        
Bezug
Transpositionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Sa 20.09.2008
Autor: Al-Chwarizmi


> (a) Schreiben Sie die Permutationen [mm]\sigma[/mm] = [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 5 & 7 & 6 & 8 & 4 & 1 }[/mm]
> und [mm]\sigma^{-1}[/mm] und [mm]\sigma^{999}[/mm] als Produkt von zyklischen
> Permutationen mit paarweise disjunkten Trägern.
>  
> (b) Schreiben Sie die Permuationen [mm]\phi[/mm] =
> (1357)(123)(45678) und [mm]\phi^{-1}[/mm] und [mm]\phi^{999}[/mm] als Produkt
> von zyklischen Permutationen mit paarweise disjunkten
> Trägern.
>  Hallo Mathefreunde,
>  
> Könnt ihr mir gerade bei [mm]\sigma^{999}[/mm] bzw. bei [mm]\phi^{999}[/mm]
> weiterhelfen?!? Irgendwie versteh ich das mit den
> Transpositionen und den Hochzahlen nicht ... :-(
>  
> Soweit bin gekommen:
>  (a) [mm]\sigma[/mm] = (13568)(47)      [ok]
>       [mm]\sigma^{-1}[/mm] = (47) (18653)    [ok]
>       [mm]\sigma^{999}[/mm] = [mm](47)^{1} (13568)^{4}[/mm]  

          natürlich ist [mm] (47)^1=(47) [/mm]
          ferner [mm] (13568)^4=(13568)(13568)(13568)(13568)=(18653) [/mm]
          insgesamt also:
           [mm]\sigma^{999}[/mm] = [mm](18653)(47)[/mm]  

>  
> (b) [mm]\phi[/mm] = (1256)(478)      [ok]

             um klar zu machen, dass da die 3 auch noch vorkommt:
             [mm]\phi[/mm] = (1256)(3)(478)


>       [mm]\phi^{-1}[/mm] = (1652)(487)     [ok]
>       [mm]\phi^{999}= (1652)^{3}[/mm] id    [notok]

          du meintest wohl:  [mm]\phi^{999}= (1256)^{3}[/mm] id

              Schlussergebnis:  [mm]\phi^{999}= (1652)[/mm]

>  
> Vielen Dank schon mal im Voraus!
>  Lg Kittycat
>  
>  

Gruß    al-Chwarizmi


Bezug
                
Bezug
Transpositionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:21 Sa 20.09.2008
Autor: kittycat

Hallo  al-Chwarizmi,

vielen, vielen Dank für deine Hilfe ... jetzt hab ich es verstanden wie man "hochrechnet" :-)

> > Soweit bin gekommen:
>  >  (a) [mm]\sigma[/mm] = (13568)(47)      [ok]
>  >       [mm]\sigma^{-1}[/mm] = (47) (18653)    [ok]
>  >       [mm]\sigma^{999}[/mm] = [mm](47)^{1} (13568)^{4}[/mm]  
>
> natürlich ist [mm](47)^1=(47)[/mm]
>            ferner
> [mm](13568)^4=(13568)(13568)(13568)(13568)=(18653)[/mm]
>            insgesamt also:
>             [mm]\sigma^{999}[/mm] = [mm](18653)(47)[/mm]  


Gilt hier eigentlich (47)(13568)=(13568)(47)??



> > (b) [mm]\phi[/mm] = (1256)(478)      [ok]
>  
> um klar zu machen, dass da die 3 auch noch vorkommt:
>               [mm]\phi[/mm] = (1256)(3)(478)
>
>
> >       [mm]\phi^{-1}[/mm] = (1652)(487)     [ok]

>  >       [mm]\phi^{999}= (1652)^{3}[/mm] id    [notok]
>  
> du meintest wohl:  [mm]\phi^{999}= (1256)^{3}[/mm] id

Ja, genau, das habe ich gemeint ... hab mich da nur in der Zeile verirrt :-)

> Schlussergebnis:  [mm]\phi^{999}= (1652)[/mm]

Danke,
Lg Kittycat


Bezug
                        
Bezug
Transpositionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Sa 20.09.2008
Autor: Al-Chwarizmi

hello Kittycat


> Gilt hier eigentlich (47)(13568)=(13568)(47)??

ja; elementfremde Zyklen beeinflussen sich ja
gegenseitig nicht, deshalb gilt für sie das Kommutativ-
gesetz, das i.A. für Zyklen natürlich nicht gültig ist

LG


  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de