www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Transpositionen
Transpositionen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transpositionen: Korrektur/Verbesserungsvors.
Status: (Frage) beantwortet Status 
Datum: 19:10 Mi 24.10.2012
Autor: Lustique

Aufgabe
Es seien $i, [mm] j\in [/mm] [1, n]$ verschiedene Zahlen. Man schreibe die Transposition $(i, j)$ als Produkt von Transpositionen der Form $(1, k)$, wo [mm] $k\in [/mm] [2,n]$.

Hallo allerseits,

ich habe, denke ich mal, eine Lösung für diese Aufgabe gefunden. Das ging aber im Grunde genommen so schnell, dass ich denke, ich habe da was übersehen, bzw. muss meine Lösung noch mal überarbeiten. Also, meine Lösung ist die Folgende:

1. Fall: Seien $i, [mm] j\neq [/mm] 1 [mm] \Rightarrow [/mm] i, [mm] j\geqslant [/mm] 2$

$(i, j) = (1, [mm] i)\circ(1, j)\circ(1, [/mm] i)$

2. Fall: OBdA $i=1 [mm] \Rightarrow k\neq [/mm] 1 [mm] \Rightarrow k\geqslant [/mm] 2$

$(i, j) = (1, j)$,

bzw. $(i, j)$ ist schon von der gewünschten Form (zur Not dann halt $i$ und $j$ innerhalb der Klammern vertauschen).



Nur

1. Kommt mir das irgendwie viel zu einfach vor.

2. Ist die Fallunterscheidung nötig, bzw. darf ich die so überhaupt benutzen? Im Fall $i=1$ ist ja $(1, [mm] i)=\mathrm{id}$ [/mm] (schreibt man das in diesem Fall so?), stört also nicht beim 1. Fall. Ist allerdings $j=1$, dann wäre ja $(1, [mm] i)\circ(1, j)\circ(1, i)=\mathrm{id}$ [/mm] und nicht $(i, j)=(i, 1)$.

Kann man das allgemein aufschreiben, ohne irgendwelche Fallunterscheidungen?

        
Bezug
Transpositionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Do 25.10.2012
Autor: wieschoo

Hi,
dein Produkt von Transpositionen ist richtig.

Meines Erachtens ist da keine Fallunterscheidung nötig, da (i,j)=(j,i) ist.
Damit gilt dein Argument von i auch für j auf grund der Symmetrie.

Da i=j bei Transpositionen (i,j) keinen Sinn macht kann man o.B.d.A i<j annehmen bei
(i,j)=(1,i)(1,j)(1,i)

da erübrigt sich jegliche Fallunterscheidung

gruß
wieschoo

Bezug
                
Bezug
Transpositionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Sa 27.10.2012
Autor: Lustique

Danke! Ich habs, als ichs nochmal überarbeitet habe,  dann auch so gemacht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de